切线的性质和判定定理.ppt

切线的性质和判定定理.ppt

ID:50394830

大小:701.00 KB

页数:29页

时间:2020-03-13

切线的性质和判定定理.ppt_第1页
切线的性质和判定定理.ppt_第2页
切线的性质和判定定理.ppt_第3页
切线的性质和判定定理.ppt_第4页
切线的性质和判定定理.ppt_第5页
资源描述:

《切线的性质和判定定理.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、分享一切优秀的品质都源于自制,不管是勤奋还是奋进,都必须以自制为前提,奋进必为落后所占据。只有管得住自己的人,才能管得住别人,管好别人的人不一定管好自己。但管得住自己的人一定能管好别人。世界上的名臣良将都是首先从自己做起,做三军之表才能服人,希望同学们加强自制力,万事首先从自己想起,管住心灵的羁荡,才能管住苍穹。24.2.2圆的切线的性质和判定定理.OBAOrM直线与圆的位置关系相交相切相离图形公共点个数公共点名称直线名称圆心到直线距离d与半径r的关系2个交点割线1个切点切线dr没有回顾:本节专门讨论直线与圆相切的情形..O相交相切相离图中直线l满足什么条件时是⊙O的切线?探究

2、:Ol方法1:直线与圆有唯一公共点方法2:直线到圆心的距离等于半径注意:实际证明过程中,通常不采用第一种方法;方法2从“量化”的角度说明圆的切线的判定方法。(1)圆心O到直线l的距离和圆的半径有什么数量关系?(2)二者位置有什么关系?为什么?(3)由此你发现了什么?O请在⊙O上任意取一点A,连接OA,过点A作直线l⊥OA。思考:lA操作与观察:(1)直线l经过半径OA的外端点A;(2)直线l垂直于半径0A.则:直线l与⊙O相切这样我们就得到了从“位置”的角度圆的切线的判定方法——切线的判定定理.AOl发现:切线的判定定理:经过半径的外端并且垂直这条半径的直线是圆的切线。对定理的理解:切线必须

3、同时满足两条:①经过半径外端;②垂直于这条半径.AOlOrlA∵OA是半径,l⊥OA于A∴l是⊙O的切线定理的数学语言表达:判断:(1)过半径的外端的直线是圆的切线()(2)与半径垂直的的直线是圆的切线()(3)过半径的端点与半径垂直的直线是圆的切线()×××OrlAOrlAOrlA巩固:两个条件缺一不可切线的判定方法有三种:①直线与圆有唯一公共点;②直线到圆心的距离等于该圆的半径;③切线的判定定理.即经过半径的外端并且垂直这条半径的直线是圆的切线.判定直线与圆相切有哪些方法?归纳:例1如图,已知:直线AB经过⊙O上的点C,并且OA=OB,CA=CB。求证:直线AB是⊙O的切线。OBAC分析

4、:由于AB过⊙O上的点C,所以连接OC,只要证明AB⊥OC即可。例题:有交点,连半径,证垂直〖规范板书〗已知:直线AB经过⊙O上的点C,并且OA=OB,CA=CB。求证:直线AB是⊙O的切线。OBAC证明:连结OC(如图)。∵OA=OB,CA=CB,∴AB⊥OC(三线合一)∵OC是⊙O的半径∴AB是⊙O的切线。例2如图,已知:O为∠BAC平分线上一点,OD⊥AB于D,以O为圆心,OD为半径作⊙O。求证:⊙O与AC相切。OABCED无交点,作垂直,证半径〖规范板书〗已知:O为∠BAC平分线上一点,OD⊥AB于D,以O为圆心,OD为半径作⊙O。求证:⊙O与AC相切。OABCED证明:过O作OE⊥

5、AC于E。∵AO平分∠BAC,OD⊥AB于点D∴OE=OD∵OD是⊙O的半径∴OE也是半径∴AC是⊙O的切线。OBACOABCED归纳:例1与例2的证法有何不同?(1)如果已知直线经过圆上一点,则连结这点和圆心,得到辅助半径,再证所作半径与这直线垂直.简记为:有交点,连半径,证垂直.(2)如果已知条件中不知直线与圆是否有公共点,则过圆心作直线的垂线段,再证垂线段长等于半径长.简记为:无交点,作垂直,证半径..OAL思考?如图:如果L是⊙O的切线,切点为A,那么半径OA与直线L是不是一定垂直呢?一定垂直切线的性质定理:圆的切线垂直于过切点的半径符号语言:∵l是⊙O的切线,切点为A∴l⊥OAOM

6、反证法这与“直线l是圆O的切线”矛盾.切线的性质定理:圆的切线垂直于经过切点的半径证明:假设l与OA不垂直,作OM⊥l于M因“垂线段最短”,故OA>OM,即圆心到直线的距离小于半径.A故直线l与圆O一定垂直.【切线的性质定理】切线的性质定理:圆的切线垂直于过切点的半径。OAl因为经过一点只有一条直线与已知直线垂直,所以经过圆心垂直于切线的直线一定过切点;反之,过切点且垂直于切线的直线也一定过圆心.由此得到:1切线的性质定理:圆的切线垂直于经过切点的半径.切线的性质定理的推论1:经过圆心且垂直于切线的直线必经过切点.切线的性质定理的推论2:经过切点且垂直于切线的直线必经过圆心.O.A1、切线和

7、圆只有一个公共点。2、切线和圆心的距离等于半径。3、切线垂直于过切点的半径。4、经过圆心垂直于切线的直线必过切点。5、经过切点垂直于切线的直线必过圆心。判断:切线的性质定理:圆的切线垂直于过切点的半径。归纳:OAl①过半径外端;②垂直于这条半径.切线①圆的切线;②过切点的半径.切线垂直于半径切线判定定理:切线性质定理:比较:OAl1、如图,⊙O切PB于点B,PB=4,PA=2,则⊙O的半径多少?例题注:已知切

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。