欢迎来到天天文库
浏览记录
ID:50393028
大小:1.12 MB
页数:15页
时间:2020-03-13
《二次函数的图象和性质.2 二次函数的图像(1).ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、新课程标准人教版实验教科书九年级上册崇信县柏树镇柏树中学陈海生2.2二次函数的图像(1)回顾知识:一、正比例函数y=kx(k≠0)其图象是什么。二、一次函数y=kx+b(k≠0)其图象又是什么。正比例函数y=kx(k≠0)其图象是一条经过原点的直线。一次函数y=kx+b(k≠0)其图象也是一条直线。三、反比例函数(k≠0)其图象又是什么。反比例函数(k≠0)其图象是双曲线。二次函数y=ax²+bx+c(a≠0)其图象又是什么呢?。二次函数y=ax2的图像xy=x2y=-x2..................0-2-1.5-1-0.511.50.52函数图象画法列表描点连
2、线00.2512.2540.2512.254描点法用光滑曲线连结时要自左向右顺次连结0-0.25-1-2.25-4-0.25-1-2.25-4注意:列表时自变量取值要均匀和对称。课堂练习画出下列函数的图象。xy=2x2............0-2-1.5-1-0.511.50.5200.524.580.524.58列表参考00.524.580.524.58xy=2x2............0-3-1.5-11.51-22301.5-61.5-6xy=x2............0-4-3-2-12314二次函数y=ax2的图象形如物体抛射时所经过的路线,我们把它叫做抛
3、物线。这条抛物线关于y轴对称,y轴就是它的对称轴。这条抛物线关于y轴对称,y轴就是它的对称轴。这条抛物线关于y轴对称,y轴就是它的对称轴。对称轴与抛物线的交点叫做抛物线的顶点。对称轴与抛物线的交点叫做抛物线的顶点。对称轴与抛物线的交点叫做抛物线的顶点。抛物线y=x2y=-x2顶点坐标对称轴位置开口方向极值课堂练习1、观察右图,并完成填空。(0,0)(0,0)y轴y轴在x轴的上方(除顶点外)在x轴的下方(除顶点外)向上向下当x=0时,最小值为0。当x=0时,最大值为0。小结二次函数y=ax2的性质1、顶点坐标与对称轴2、位置与开口方向3、增减性与极值2、练习2在同一坐标系内
4、,抛物线y=x2与抛物线y=-x2的位置有什么关系?如果在同一坐标系内画函数y=ax2与y=-ax2的图象,怎样画才简便?在同一坐标系内,抛物线y=x2与抛物线y=-x2的位置有什么关系?如果在同一坐标系内画函数y=ax2与y=-ax2的图象,怎样画才简便?答:抛物线抛物线y=x2与抛物线y=-x2既关于x轴对称,又关于原点对称。只要画出y=ax2与y=-ax2中的一条抛物线,另一条可利用关于x轴对称或关于原点对称来画。例1、已知二次函数y=ax2(a≠0)的图像经过点(-2,-3).(1)求a的值,并写出这个二次函数的解析式.(2)说出这个二次函数的顶点坐标、对称轴
5、、开口方向和图像的位置.驶向胜利的彼岸练习一、已知抛物线y=ax2经过点A(-2,-8)。(1)求此抛物线的函数解析式;(2)判断点B(-1,-4)是否在此抛物线上。(3)求出此抛物线上纵坐标为-6的点的坐标。解(1)把(-2,-8)代入y=ax2,得-8=a(-2)2,解出a=-2,所求函数解析式为y=-2x2.(2)因为,所以点B(-1,-4)不在此抛物线上。(3)由-6=-2x2,得x2=3,所以纵坐标为-6的点有两个,它们分别是y=-2x2驶向胜利的彼岸练习二、若抛物线y=ax2(a≠0),过点(-1,3)。(1)则a的值是;(2)对称轴是,开口。(3)顶点坐标是
6、,顶点是抛物线上的。抛物线在x轴的方(除顶点外)。谈收获:1.二次函数y=ax2(a≠0)的图像是一条抛物线.2.图象关于y轴对称,顶点是坐标原点.3.当a>0时,抛物线的开口向上,顶点是抛物线上的最低点;当a<0时,抛物线的开口向下,顶点是抛物线的最高点.课本P30---31页作业题再见作业:
此文档下载收益归作者所有