计量经济学 第三章、经典单方程计量经济学模型:多元线性回归模型.doc

计量经济学 第三章、经典单方程计量经济学模型:多元线性回归模型.doc

ID:50294948

大小:684.50 KB

页数:18页

时间:2020-03-05

计量经济学 第三章、经典单方程计量经济学模型:多元线性回归模型.doc_第1页
计量经济学 第三章、经典单方程计量经济学模型:多元线性回归模型.doc_第2页
计量经济学 第三章、经典单方程计量经济学模型:多元线性回归模型.doc_第3页
计量经济学 第三章、经典单方程计量经济学模型:多元线性回归模型.doc_第4页
计量经济学 第三章、经典单方程计量经济学模型:多元线性回归模型.doc_第5页
资源描述:

《计量经济学 第三章、经典单方程计量经济学模型:多元线性回归模型.doc》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、第三章、经典单方程计量经济学模型:多元线性回归模型一、内容提要本章将一元回归模型拓展到了多元回归模型,其基本的建模思想与建模方法与一元的情形相同。主要内容仍然包括模型的基本假定、模型的估计、模型的检验以及模型在预测方面的应用等方面。只不过为了多元建模的需要,在基本假设方面以及检验方面有所扩充。本章仍重点介绍了多元线性回归模型的基本假设、估计方法以及检验程序。与一元回归分析相比,多元回归分析的基本假设中引入了多个解释变量间不存在(完全)多重共线性这一假设;在检验部分,一方面引入了修正的可决系数,另一方面引入了对多个解释变量是否对被解释

2、变量有显著线性影响关系的联合性F检验,并讨论了F检验与拟合优度检验的内在联系。本章的另一个重点是将线性回归模型拓展到非线性回归模型,主要学习非线性模型如何转化为线性回归模型的常见类型与方法。这里需要注意各回归参数的具体经济含义。本章第三个学习重点是关于模型的约束性检验问题,包括参数的线性约束与非线性约束检验。参数的线性约束检验包括对参数线性约束的检验、对模型增加或减少解释变量的检验以及参数的稳定性检验三方面的内容,其中参数稳定性检验又包括邹氏参数稳定性检验与邹氏预测检验两种类型的检验。检验都是以F检验为主要检验工具,以受约束模型与无

3、约束模型是否有显著差异为检验基点。参数的非线性约束检验主要包括最大似然比检验、沃尔德检验与拉格朗日乘数检验。它们仍以估计无约束模型与受约束模型为基础,但以最大似然原理进行估计,且都适用于大样本情形,都以约束条件个数为自由度的分布为检验统计量的分布特征。非线性约束检验中的拉格朗日乘数检验在后面的章节中多次使用。二、典型例题分析例1.某地区通过一个样本容量为722的调查数据得到劳动力受教育的一个回归方程为R2=0.214式中,edu为劳动力受教育年数,sibs为该劳动力家庭中兄弟姐妹的个数,medu与fedu分别为母亲与父亲受到教育的年

4、数。问(1)sibs是否具有预期的影响?为什么?若medu与fedu保持不变,为了使预测的受教育水平减少一年,需要sibs增加多少?(2)请对medu的系数给予适当的解释。(3)如果两个劳动力都没有兄弟姐妹,但其中一个的父母受教育的年数为12年,另一个的父母受教育的年数为16年,则两人受教育的年数预期相差多少?解答:(1)预期sibs对劳动者受教育的年数有影响。因此在收入及支出预算约束一定的条件下,子女越多的家庭,每个孩子接受教育的时间会越短。根据多元回归模型偏回归系数的含义,sibs前的参数估计值-0.094表明,在其他条件不变的

5、情况下,每增加1个兄弟姐妹,受教育年数会减少0.094年,因此,要减少1年受教育的时间,兄弟姐妹需增加1/0.094=10.6个。(2)medu的系数表示当兄弟姐妹数与父亲受教育的年数保持不变时,母亲每增加1年受教育的机会,其子女作为劳动者就会预期增加0.131年的教育机会。(3)首先计算两人受教育的年数分别为10.36+0.131´12+0.210´12=14.45210.36+0.131´16+0.210´16=15.816因此,两人的受教育年限的差别为15.816-14.452=1.364例2.以企业研发支出(R&D)占销售额

6、的比重为被解释变量(Y),以企业销售额(X1)与利润占销售额的比重(X2)为解释变量,一个有32容量的样本企业的估计结果如下:其中括号中为系数估计值的标准差。(1)解释log(X1)的系数。如果X1增加10%,估计Y会变化多少个百分点?这在经济上是一个很大的影响吗?(2)针对R&D强度随销售额的增加而提高这一备择假设,检验它不虽X1而变化的假设。分别在5%和10%的显著性水平上进行这个检验。(3)利润占销售额的比重X2对R&D强度Y是否在统计上有显著的影响?解答:(1)log(x1)的系数表明在其他条件不变时,log(x1)变化1个

7、单位,Y变化的单位数,即DY=0.32Dlog(X1)»0.32(DX1/X1)=0.32´100%,换言之,当企业销售X1增长100%时,企业研发支出占销售额的比重Y会增加0.32个百分点。由此,如果X1增加10%,Y会增加0.032个百分点。这在经济上不是一个较大的影响。(2)针对备择假设H1:,检验原假设H0:。易知计算的t统计量的值为t=0.32/0.22=1.468。在5%的显著性水平下,自由度为32-3=29的t分布的临界值为1.699(单侧),计算的t值小于该临界值,所以不拒绝原假设。意味着R&D强度不随销售额的增加而

8、变化。在10%的显著性水平下,t分布的临界值为1.311,计算的t值小于该值,拒绝原假设,意味着R&D强度随销售额的增加而增加。(3)对X2,参数估计值的t统计值为0.05/0.46=1.087,它比在10%的显著性水平下的临界值还小

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。