经典单方程计量经济学模型多元线性回归模型

经典单方程计量经济学模型多元线性回归模型

ID:28999355

大小:252.04 KB

页数:7页

时间:2018-12-15

经典单方程计量经济学模型多元线性回归模型_第1页
经典单方程计量经济学模型多元线性回归模型_第2页
经典单方程计量经济学模型多元线性回归模型_第3页
经典单方程计量经济学模型多元线性回归模型_第4页
经典单方程计量经济学模型多元线性回归模型_第5页
资源描述:

《经典单方程计量经济学模型多元线性回归模型》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、四、习题参考答案(一)基本知识类题型3-1.解释下列概念(1)在现实经济活动中往往存在一个被解释变量受到多个解释变量的影响的现象,表现为在线性回归模型中有多个解释变量,这样的模型被称为多元线性回归模型,多元指多个解释变量。(2)形如的关于参数估计值的线性代数方程组称为正规方程组。3-2.答:变量非线性、系数线性;变量、系数均线性;变量、系数均线性;变量线性、系数非线性;变量、系数均为非线性;变量、系数均为非线性;变量、系数均为线性。3-3.答:多元线性回归模型与一元线性回归模型的区别表现在如下几方面:一是解释变量的个数不同;二是模型的经典假设

2、不同,多元线性回归模型比一元线性回归模型多了“解释变量之间不存在线性相关关系”的假定;三是多元线性回归模型的参数估计式的表达更复杂;3-4.在多元线性回归模型中,参数的最小二乘估计量具备线性、无偏性、最小方差性,同时多元线性回归模型满足经典假定,所以此时的最小二乘估计量是最优的线性无偏估计量,又称BLUE估计量。对于多元线性回归最小二乘估计的正规方程组,3-5.答:多元线性回归模型的基本假定有:零均值假定、随机项独立同方差假定、解释变量的非随机性假定、解释变量之间不存在线性相关关系假定、随机误差项服从均值为0方差为的正态分布假定。在证明最小二

3、乘估计量的无偏性中,利用了解释变量与随机误差项不相关的假定;在有效性的证明中,利用了随机项独立同方差假定。3-6.答:区间估计是指研究用未知参数的点估计值(从一组样本观测值算得的)作为近似值的精确程度和误差范围。(二)基本证明与问答类题型3-7.答:含有待估关系估计量的方程组称为正规方程组。正规方程组的非矩阵形式如下:正规方程组的矩阵形式如下:推导过程略。3-16.解:(1)证明:由参数估计公式可得下列参数估计值证毕。⑵证明:证毕。⑶设:I式的拟合优度为:II式的拟合优度为:在⑵中已经证得成立,即二式分子相同,若要模型II的拟合优度小于模型I

4、的拟合优度,必须满足:。3-17.答:⑴方程B更合理些。原因是:方程B中的参数估计值的符号与现实更接近些,如与日照的小时数同向变化,天长则慢跑的人会多些;与第二天需交学期论文的班级数成反向变化,这一点在学校的跑道模型中是一个合理的解释变量。⑵解释变量的系数表明该变量的单位变化在方程中其他解释变量不变的条件下对被解释变量的影响,在方程A和方程B中由于选择了不同的解释变量,如方程A选择的是“该天的最高温度”而方程B选择的是“第二天需交学期论文的班级数”,由此造成与这两个变量之间的关系不同,所以用相同的数据估计相同的变量得到不同的符号。3-18.答

5、:将模型⑴改写成,则的估计值为:将模型⑵改写成,则的估计值为:这两个模型都是三变量回归模型⑶在某种限制条件下的变形。如果限制条件正确,则前两个回归参数会更有效;如果限制条件不正确则前两个回归参数会有偏。3-19.答:⑴答案并不唯一,猜测为:为学生数量,为附近餐厅的盒饭价格,为气温,为校园内食堂的盒饭价格;⑵理由是被解释变量应与学生数量成正比,并且应该影响显著;与本食堂盒饭价格成反比,这与需求理论相吻合;与附近餐厅的盒饭价格成正比,因为彼此是替代品;与气温的变化关系不是十分显著,因为大多数学生不会因为气温升高不吃饭。(三)基本计算类题型3-22

6、.解:⑴⑵其中:同理,可得:,拟合优度为:⑶,查表得,得到,得到,⑷,,查表得临界值为则:⑸所有的部分系数为0,即:,等价于方差来源平方和自由度平方和的均值来自回归65963.018232981.509来自残差79.2507126.6042总离差66042.269,,临界值为3.89值是显著的,所以拒绝零假设。3-23.解:⑴对给定在5%的显著水平下,可以进行t检验,得到的结果如下:系数假设符号++T值5%显著水平3-28.解:⑴在降雨量不变时,每亩增加一磅肥料将使第年的玉米产量增加0.1蒲式耳/亩;在每亩施肥量不变的情况下,每增加一英寸的降

7、雨量将使第年的玉米产量增加5.33蒲式耳/亩;⑵在种地的一年中不施肥、也不下雨的现象同时发生的可能性极小,所以玉米的负产量不可能存在;⑶如果的真实值为0.40,并不能说明0.1是有偏的估计,理由是0.1是本题估计的参数,而0.40是从总体得到的系数的均值。⑷不一定。即便该方程并不满足所有的古典模型假设、不是最佳线性无偏估计值,也有可能得出的估计系数等于5.33。3-29.解:⑴该方程组的矩阵向量形式为:⑵⑶的方差—协方差矩阵为:

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。