高中数学压轴题系列——导数专题——小题之构造函数解题.pdf

高中数学压轴题系列——导数专题——小题之构造函数解题.pdf

ID:50254727

大小:243.03 KB

页数:4页

时间:2020-03-14

高中数学压轴题系列——导数专题——小题之构造函数解题.pdf_第1页
高中数学压轴题系列——导数专题——小题之构造函数解题.pdf_第2页
高中数学压轴题系列——导数专题——小题之构造函数解题.pdf_第3页
高中数学压轴题系列——导数专题——小题之构造函数解题.pdf_第4页
资源描述:

《高中数学压轴题系列——导数专题——小题之构造函数解题.pdf》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、高中数学压轴题系列——导数专题——小题之构造函数解题构造函数利用单调性解不等式问题f(x)类型一:或xf(x)型构造x1.(2015•新课标II)设函数f′(x)是奇函数f(x)(x∈R)的导函数,f(﹣1)=0,当x>0时,xf′(x)﹣f(x)<0,则使得f(x)>0成立的x的取值范围是()A.(﹣∞,﹣1)∪(0,1)B.(﹣1,0)∪(1,+∞)C.(﹣∞,﹣1)∪(﹣1,0)D.(0,1)∪(1,+∞)2.(2016•南充一模)函数f′(x)是奇函数f(x)(x∈R)的导函数,f(1)=0,当x<0时,xf′(x)+f(x)>0,则使得f

2、(x)<0成立的x的取值范围是()A.(﹣∞,﹣1)∪(0,1)B.(﹣1,0)∪(1,+∞)C.(﹣∞,﹣1)∪(1,+∞)D.(﹣1,0)∪(0,1)3.(2015•天津校级模拟)已知f(x)是定义在R上的奇函数,且f(1)=0,f′(x)是f(x)的导函数,当x>0时总有xf′(x)<f(x)成立,则不等式f(x)>0的解集为()A.{x

3、x<﹣1或x>1}B.{x

4、x<﹣1或0<x<1}C.{x

5、﹣1<x<0或0<x<1}D.{x

6、﹣1<x<1,且x≠0}4.(2015•桂林校级模拟)已知f(x)是定义在R上的奇函数,f(﹣1)=﹣1,且当x

7、>0时,有xf′(x)>f(x),则不等式f(x)>x的解集是()A.(﹣1,0)B.(1,+∞)C.(﹣1,0)∪(1,+∞)D.(﹣∞,﹣1)∪(1,+∞)f(x)x类型二:或ef(x)型构造xe1.(2015•渝中区校级一模)已知定义在R上的可导函数y=f(x)的导函数为f′(x),满足f(x)<f′(x),且f(0)=2,则不等式的解集为()A.(﹣∞,0)B.(0,+∞)C.(﹣∞,2)D.(2,+∞)2.(2015•合肥三模)定义在R上的函数f(x)满足:f(x)>1且f(x)+f′(x)>1,f(0)=5,其中f′(x)是f(x)的导

8、函数,则不等式ln[f(x)﹣1]>ln4﹣x的解集为()A.(0,+∞)B.(﹣∞,0)∪(3,+∞)C.(﹣∞,0)∪(0,+∞)D.(﹣∞,0)f(x)n类型三:或xf(x)型构造nx1.(2015•鹰潭一模)设函数f(x)是定义在(﹣∞,0)上的可导函数,其导函数为f′(x),且有3f(x)+xf′(x)>0,则不等式(x+2015)3f(x+2015)+27f(﹣3)>0的解集()A.(﹣2018,﹣2015)B.(﹣∞,﹣2016)C.(﹣2016,﹣2015)D.(﹣∞,﹣2012)2.(2017•湖北四模)设定义在R上的可导函数f(

9、x)的导函数为f′(x),若f(3)=1,且3f(x)+xf′(x)>ln(x+1),则不等式(x﹣2017)3f(x﹣2017)﹣27>0的解集为()A.(2014,+∞)B.(0,2014)C.(0,2020)D.(2020,+∞)3.(2017•湖南一模)设函数f(x)是定义在(﹣∞,0)上的可导函数,其导函数为f′(x),且有xf′(x)>x2+3f(x),则不等式8f(x+2014)+(x+2014)3f(﹣2)>0的解集为()A.(﹣∞,﹣2016)B.(﹣2018,﹣2016)C.(﹣2018,0)D.(﹣∞,﹣2018)4.(2016

10、•朝阳二模)设函数f(x)是定义在(﹣∞,0)上的可导函数,其导函数为f′(x),且有2f(x)+xf′(x)<x,则不等式(x+6)2f(x+6)﹣f(﹣1)>0的解集为()A.(﹣∞,﹣6)B.(﹣∞,﹣7)C.(﹣7,0)D.(﹣7,﹣6)类型四:利用函数的奇偶性构造1.(2015•乌鲁木齐模拟)设函数f(x)在R上存在导数f′(x),对任意的x∈R,有f(﹣x)+f(x)=x2,且x∈(0,+∞)时,f′(x)>x.若f(2﹣a)﹣f(a)≥2﹣2a,则实数a的取值范围为()A.[1,+∞)B.(﹣∞,1]C.(﹣∞,2]D.[2,+∞)2.

11、(2015•德阳模拟)设函数f(x)在R上存在导函数f′(x),对∀x∈R,f(﹣x)+f(x)=x2,且在(0,+∞)上,f′(x)>x.若有f(2﹣a)﹣f(a)≥2﹣2a,则实数a的取值范围为()A.(﹣∞,1]B.[1,+∞)C.(﹣∞,2]D.[2,+∞)3.(2015•固原校级三模)设函数f(x)在R上存在导数f′(x),∀x∈R,有f(﹣x)+f(x)=x2,在(0,+∞)上f′(x)<x,若f(4﹣m)﹣f(m)≥8﹣4m.则实数m的取值范围为()A.[﹣2,2]B.[2,+∞)C.[0,+∞)D.(﹣∞,2]∪[2,+∞)4.(20

12、15秋•重庆校级月考)设函数f(x)在R上存在导数f′(x),在(0,+∞)上f′(x)<sin2x,且∀x

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。