假设检验二项分布与正态分布.doc

假设检验二项分布与正态分布.doc

ID:50249226

大小:89.50 KB

页数:5页

时间:2020-03-07

假设检验二项分布与正态分布.doc_第1页
假设检验二项分布与正态分布.doc_第2页
假设检验二项分布与正态分布.doc_第3页
假设检验二项分布与正态分布.doc_第4页
假设检验二项分布与正态分布.doc_第5页
资源描述:

《假设检验二项分布与正态分布.doc》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、第七章假设检验有了概率和概率分布的知识,接下来我们要逐步掌握统计检验的一般步骤。既然按照数学规则得到的概率都不能用经验方法准确求得,于是,理论概率和经验得到的频率之间肯定存在某种差别,这就引出了实践检验理论的问题。第一节二项分布二项分布是从著名的贝努里试验中推导而来。所谓贝努里试验,是指只有两种可能结果的随机试验。。每当情况如同贝努里试验,是在相同的条件下重复n次,考虑的是“成功”的概率,且各次试验相互独立,就可利用与二项分布有关的统计检验。虽然许多分布较之二项分布更实用,但二项分布简单明了,况且其他概率

2、分布的使用和计算逻辑与之相同。所以要理解统计检验以及它所涉及的许多新概念,人们几乎都乐意从二项分布的讨论入手。1.二项分布的数学形式二项试验中随机变量X的概率分布,即P(X=x)=pxqn-x。(7.3)2.二项分布的讨论(1)二项分布为离散型随机变量的分布。(2)二项分布的图形当p=0.5时是对称的,当p≠0.5时是非对称的,而当n愈大时非对称性愈不明显。(3)二项分布的数学期望E(X)=μ=np,变异数D(X)=σ2=npq。(4)二项分布受成功事件概率p和试验次数n两个参数变化的影响,只要确定了p和

3、n,成功次数x的概率分布也随之确定。因而,二项分布还可简写作B(x;n,p)。(5)二项分布的概率值除了根据公式直接进行计算外,还可查表求得。第二节统计检验的基本步骤概率分布不是一种研究者从资料中看到的分布,我们讨论它,不是出于对数学的爱好,而是因为统计推论的有关工作需要它。所有的统计检验都包含某些特定的步骤:(1)建立假设;(2)求抽样分布(所谓抽样分布,就是把具体概率数值赋予样本每个或每组结果的概率分布);(3)选择显著性水平和否定域;(4)计算检验统计量;(5)判定。1.建立假设统计检验是将抽样结果

4、和抽样分布相对照而作出判断的工作。取得抽样结果,依据描述性统计的方法就足够了。抽样分布则不然,它无法从资料中得到,非利用概率论不可。而不对待概括的总体和使用的抽样程序做某种必要的假设,这项工作将无法进行。2.求抽样分布5在做了必要的假设之后,我们就能用数学推理过程来求抽样分布了。由于数学上已经取得的成果,实际上统计工作者要做的这项工作往往并不是真的去求抽样分布的数学形式,而是根据具体需要,确定特定问题的统计检验应该采用哪种分布的数学用表。3.选择显著性水平和否定域有了与问题相关的抽样分布,我们便可以把所有

5、可能的结果分成两类:一类是不大可能的结果;另一类人们预料这些结果很可能发生。既然如此,如果我们在一次实际抽样中得到的结果恰好属于第一类,我们就有理由对概率分布的前提假设产生怀疑。在统计检验中,这些不大可能的结果称为否定域。如果这类结果真的发生了,我们将否定假设;反之就不否定假设。概率分布的具体形式是由假设决定的,假设肯定不止一个。在统计检验中,通常把被检验的那个假设称为零假设(或称原假设,用符号H0表示),并用它和其他备择假设(用符号H1表示)相对比。值得注意的是,假设只能被检验,从来不能加以证明。统计检

6、验可以帮助我们否定一个假设,却不能帮助我们肯定一个假设。为了使检验更严格、更科学,还需要更多的东西。首先,我们必须确定甘冒犯第一类和第二类错误的风险的程度;其次,要确定否定域是否要包含抽样分布的两端。第一类错误是,零假设H0实际上是正确的,却被否定了。第二类错误则是,H0实际上是错的,却没有被否定。第二类错误是,零假设H0实际上是错误的,却没有被否定。遗憾的是,不管我们如何选择否定域,都不可能完全避免第一类错误和第二类错误,也不可能同时把犯两类错误的危险压缩到最小。对任何一个给定的检验而言,第一类错误的危

7、险越小,第二类错误的概率就越大;反之亦然。一般来讲,不可能具体估计出第二类错误的概率值。第一类错误则不然,犯第一类错误的概率是否定域内各种结果的概率之和。由于犯第一类错误的危险和犯第二类错误的危险呈相背趋向,所以统计检验时,我们必须事先在甘冒多大第一类错误的风险和多大第二类错误的风险之间作出权衡。被我们事先选定的可以犯第一类错误的概率,叫做检验的显著性水平(用α表示),它决定了否定域的大小。如果抽样分布是连续的,否定域可以建立在想要建立的任何水平上,否定域的大小可以和显著性水平的要求一致起来(后面的正态检

8、验就如此)。如果抽样分布是非连续的,就要用累计概率的方法找出一组构成否定域的结果。即在已知概率分布表上,从两端可能性最小的概率开始向中心累计,直至概率之和略小于选定的显著性水平为止。在许多场合,我们能预测偏差的方向,或只对一个方向的偏差感兴趣。每当方向能被预测的时候,在同样显著性水平的条件下,单侧检验比双侧检验更合适。因为否定域被集中到抽样分布更合适的一侧,可以得到一个比较大的尾端。这样做,可以在犯第一类错误的危险不变的情况下

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。