资源描述:
《高二数学古典概型.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、2021/7/25古典概型(1)2021/7/25概 率 初 步温故而知新:1.从事件发生与否的角度可将事件分为哪几类?2.概率是怎样定义的?3、概率的性质:必然事件、不可能事件、随机事件0≤P(A)≤1;P(Ω)=1,P(φ)=0.即,(其中P(A)为事件A发生的概率)一般地,如果随机事件A在n次试验中发生了m次,当试验的次数n很大时,我们可以将事件A发生的频率作为事件A发生的概率的近似值,2021/7/25考察下列现象,判断那些是随机现象,如果是随机试验,则写出所有可能的结果:1、抛一铁块,下落
2、。2、在摄氏20度,水结冰。3、掷一颗均匀的骰子,其中可能出现的点数为1,2,3,4,5,6.4、连续掷两枚硬币,两枚硬币可能出现的正反面的结果。5、从装有红、黄、蓝三个大小形状完全相同的球的袋中,任取两个球,其中可能出现不同色的两个球的结果。概 率 初 步2021/7/25问题引入:有红心1,2,3和黑桃4,5这5张扑克牌,将其牌点向下置于桌上,现从中任意抽取一张,那么抽到的牌为红心的概率有多大?2021/7/25概 率 初 步古 典 概 率知识新授:考察两个试验(1)掷一枚质地均匀的硬币的试验(
3、2)掷一枚质地均匀的骰子的试验正面向上反面向上六种随机事件基本事件(1)中有两个基本事件(2)中有6个基本事件特点任何两个基本事件是互斥的;(2)任何事件(除不可能事件)都可以表示成基本事件的和.什么是基本事件?它有什么特点?在一个试验可能发生的所有结果中,那些不能再分的最简单的随机事件称为基本事件。(其他事件都可由基本事件的和来描述)1、基本事件2021/7/25概 率 初 步古 典 概 率我们会发现,以上试验有两个共同特征:(1)有限性:在随机试验中,其可能出现的结果有有限个,即只有有限个不同的
4、基本事件;(2)等可能性:每个基本事件发生的机会是均等的.我们称这样的随机试验为古典概型.2、古典概型2021/7/25概 率 初 步古 典 概 率一般地,对于古典概型,如果试验的基本事件为n,随机事件A所包含的基本事件数为m,我们就用来描述事件A出现的可能性大小,称它为事件A的概率,记作P(A),即有.我们把可以作古典概型计算的概率称为古典概率.3、古典概率注:A即是一次随机试验的样本空间的一个子集,而m是这个子集里面的元素个数;n即是一次随机试验的样本空间的元素个数.2021/7/25概 率 初
5、 步古 典 概 率(1)随机事件A的概率满足0≤P(A)≤1(2)必然事件的概率是1,不可能的事件的概率是0,即P(Ω)=1,P(Φ)=0.如:1、抛一铁块,下落。2、在摄氏20度,水结冰。是必然事件,其概率是1是不可能事件,其概率是03、概率的性质2021/7/25概 率 初 步例题分析1、掷一颗均匀的骰子,求掷得偶数点的概率。分析:先确定掷一颗均匀的骰子试验的样本空间Ω和掷得偶数点事件A,再确定样本空间元素的个数n,和事件A的元素个数m.最后利用公式即可。解:掷一颗均匀的骰子,它的样本空间是Ω=
6、{1,2,3,4,5,6}∴n=6而掷得偶数点事件A={2,4,6}∴m=3∴P(A)=2021/7/25概 率 初 步例题分析2、从含有两件正品a,b和一件次品c的三件产品中每次任取1件,每次取出后不放回,连续取两次,求取出的两件中恰好有一件次品的概率。分析:样本空间事件A它们的元素个数n,m公式解:每次取一个,取后不放回连续取两次,其样本空间是Ω={}(a,b),(a,c),(b,a),(b,c),(c,a),(c,b)∴n=6用A表示“取出的两件中恰好有一件次品”这一事件,则A={}(a,c)
7、,(b,c),(c,a),(c,b)∴m=4∴P(A)=2021/7/25概 率 初 步例题分析3、从含有两件正品a,b和一件次品c的三件产品中每次任取1件,每次取出后放回,连续取两次,求取出的两件中恰好有一件次品的概率.解:有放回的连取两次取得两件,其一切可能的结果组成的样本空间是Ω={}(a,a),(a,b),(a,c),(b,a),(b,b),(b,c),(c,a),(c,b),(c,c)∴n=9用B表示“恰有一件次品”这一事件,则B={}(a,c),(b,c),(c,a),(c,b)∴m=4
8、∴P(B)=2021/7/25概 率 初 步巩固练习1、从含有两件正品a,b和一件次品c的三件产品中任取2件,求取出的两件中恰好有一件次品的概率。解:试验的样本空间为Ω={ab,ac,bc}∴n=3用A表示“取出的两件中恰好有一件次品”这一事件,则A={ac,bc}∴m=2∴P(A)=2021/7/25概 率 初 步巩固练习2、从1,2,3,4,5五个数字中,任取两数,求两数都是奇数的概率.解:试验的样本空间是Ω={(12),(13),(14),(15),(23),(