二次函数解析式的求法.ppt

二次函数解析式的求法.ppt

ID:50036338

大小:322.50 KB

页数:18页

时间:2020-03-08

二次函数解析式的求法.ppt_第1页
二次函数解析式的求法.ppt_第2页
二次函数解析式的求法.ppt_第3页
二次函数解析式的求法.ppt_第4页
二次函数解析式的求法.ppt_第5页
资源描述:

《二次函数解析式的求法.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、二次函数解析式的求法一,知识要点:1,二次函数常见的三种表示形式:(1)一般式(2)顶点式2,会根据抛物线过(1)一般三点坐标求解析式(2)顶点和另一点坐标求解析式(3)与X轴的两交点坐标及另一点坐标求解析式二,复习导入新课:1,二次函数的解析式(1)一般式(2)顶点式2,二次函数解析(常见的三种表示形式)(1)一般式(2)顶点式二,例题讲解:1,若抛物线y=x2-4x+c(1)过点A(1,3)求c(2)顶点在X轴上求c(1)点在抛物线上,将A(1,3)代入解析式求得c=6(2)X轴上的点的特点(x,

2、0)根据顶点的纵坐标为0求得:c=42,若抛物线y=ax2+2x+c的对称轴是直线x=2且函数的最大值是-3,求a,c分析:实质知道顶点坐标(2,-3)且为最高点抛物线开口向下解:解得3,根据下列条件求二次函数解析式(1)抛物线过点(0,0)(1,2)(2,3)三点解法:抛物线过一般三点通常设一般式将三点坐标代入求出a,b,c的值解:设二次函数解析式为:y=ax2+bx+c则解得:所求的抛物线解析式为:(2)抛物线顶点是(2,-1)且过点(-1,2)解法(一)可设一般式列方程组求a,b,c解法(二)可

3、设顶点式解:∵抛物线的顶点为(2,-1)∴设解析式为:y=a(x-2)2-1把点(-1,2)代入a(-1-2)2-1=2(3)图象与X轴交于(2,0)(3,0)且函数最小值是-3分析:函数最小值:-3即顶点纵坐标但隐藏着抛物线开口向上这个条件可设一般式来解.但比较繁可设交点式来解求得的解析式为:y=12x2-60x+724,练习:求下列二次函数解析式(1)抛物线y=x2-5(m+1)x+2m的对称轴是y轴所求的解析式为:y=x2-2(2)y=(m-3)x2+mx+m+3的最大值是0(3)抛物线y=ax

4、2+bx+c的顶点是(-1,2),且a+b+c+2=0(3)y=ax2+bx+c且a:b:c=2:3:4,函数有最小值解得:y=4x2+6x+85,思考题:(求下列二次函数解析式)(1)若抛物线y=(m2-2)x2-4mx+n对称轴是直线x=2,且最高点在直线上解法:可先求出顶点坐标(2,2)再由题意得解得:m=-1n=-2即:y=-x2+4x-2(2)若抛物线y=2x2+bx+c过点(2,3)且顶点在直线y=3x-2上解法:可抓住顶点在直线y=3x-2上设抛物线的顶点坐标为(m,3m-2)来解所求得

5、的抛物线解析式为:6(1)抛物线y=ax2+bx+c与y=-x2形状相同,对称轴是直线x=3,最高点在直线y=x+1上,求抛物线解析式;(2)若(1)中求得的抛物线的顶点在直线y=x+1上移动到点P时,它与X轴交于(x1,0)(x2,0),且x12+x22=6,求P点坐标Y=-(x-3)2+4Y=-x2+2x+1P(1,2)7已知直线y=kx+b与x轴相交于点A的横坐标为2,与抛物线y=ax2相交于B、C两点,且点B与点P(-1,1)关于y轴对称.(1)求直线和抛物线的解析式;(2)若抛物线上有一点D

6、,使S△AOD=S△BOC,求点D的坐标.8已知抛物线y=ax2+bx+c与直线y=kx+4相交于点A(1,m),B(4,8),与x轴交于坐标原点O和点C.(1)求直线和抛物线解析式.(2)在x轴上方的抛物线是否存在D点,使得S△OCD=S△OCB.若存在,求出所有符合条件的点;若不存在,说明理由.小结(1)二次函数解析式的三种表示形式(1)一般式(2)顶点式(2)求二次函数解析式时图象过一般三点:常设一般式知顶点坐标:常设顶点式

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。