资源描述:
《二次函数y=ax2+c(a≠0)的图象和性质(2).ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、北师大版九年级(下)2二次函数的图象与性质(2)函数y=ax2(a≠0)的图象和性质在同一坐标系中作二次函数y=x2和y=2x2的图象.做一做(1)完成下表:(2)分别作出y=x2和y=2x2的图象.xy=x2y=2x2x…-3-2-10123…y=x2y=2x2x…9410149…x………188202818…二次项系数a>0,开口都向上;对称轴都是y轴;增减性与也相同.顶点都是原点(0,0).二次函数y=2x2的图象形状与y=x2一样,仍是抛物线.(3)二次函数y=2x2的图象是什么形状?它与二次函数y=x2的图象有什么相同和不同?它的开口方向、对称轴和顶点坐标分别是什么
2、?只是开口大小不同.想一想,在同一坐标系中作二次函数y=-x2和y=-2x2的图象,会是什么样?二次项系数a<0,开口都向下;对称轴都是y轴;增减性与也相同.顶点都是原点(0,0).二次函数y=-2x2的图象形状与y=-x2一样,仍是抛物线.(4)二次函数y=-2x2的图象是什么形状?它与二次函数y=-x2的图象有什么相同和不同?它的开口方向、对称轴和顶点坐标分别是什么?只是开口大小不同.请你总结二次函数y=ax2的图象和性质.1.抛物线y=ax2的顶点是原点,对称轴是y轴.3.当a>0时,在对称轴的左侧,y随着x的增大而减小;在对称轴右侧,y随着x的增大而增大.当x=0时
3、函数y的值最小.当a<0时,在对称轴的左侧,y随着x的增大而增大;在对称轴的右侧,y随着x增大而减小,当x=0时,函数y的值最大.二次函数y=ax2的性质2.当a>0时,抛物线y=ax2在x轴的上方(除顶点外),它的开口向上,并且向上无限伸展;当a<0时,抛物线y=ax2在x轴的下方(除顶点外),它的开口向下,并且向下无限伸展.4.越大,开口越小,越小,开口越大.我思,我进步在同一坐标系中作出二次函数y=2x²+1的图象与二次函数y=2x²的图象.议一义二次函数y=2x²+1的图象与二次函数y=2x²的图象有什么关系?它们是轴对称图形吗?它的开口方向、对称轴和顶点坐标分别是
4、什么?作图看一看.二次项系数为2,开口向上;开口大小相同;对称轴都是y轴;增减性与也相同.顶点不同,分别是原点(0,0)和(0,1).二次函数y=2x2+1的图象形状与y=2x2一样,仍是抛物线.二次函数y=2x2+1的图象是什么形状?它与二次函数y=2x2的图象有什么相同和不同?它的开口方向、对称轴和顶点坐标分别是什么?位置不同;最小值不同:分别是1和0.想一想,在同一坐标系中作二次函数y=-2x2+1和y=-2x2的图象,会是什么样?y二次项系数为-2,开口向下;开口大小相同;对称轴都是y轴;增减性与也相同.顶点不同,分别是原点(0,0)和(0,1).二次函数y=-2x
5、2+1的图象形状与y=-2x2一样,仍是抛物线.二次函数y=-2x2+1的图象是什么形状?它与二次函数y=-2x2的图象有什么相同和不同?它的开口方向、对称轴和顶点坐标分别是什么?位置不同;最大值不同:分别是1和0..想一想,二次函数y=ax2+c和y=ax2的图象和性质?我思,我进步在同一坐标系中作出二次函数y=3x²-1的图象与二次函数y=3x²的图象.议一义二次函数y=3x²一l的图象与二次函数y=3x²的图象有什么关系?它们是轴对称图形吗?它的开口方向、对称轴和顶点坐标分别是什么?二次项系数为正数3,开口向上;开口大小相同;对称轴都是y轴;增减性与也相同.顶点不同,
6、分别是原点(0,0)和(0,-1).二次函数y=3x2+1的图象形状与y=3x2一样,仍是抛物线.二次函数y=3x2-1的图象是什么形状?它与二次函数y=3x2的图象有什么相同和不同?它的开口方向、对称轴和顶点坐标分别是什么?位置不同;最大值不同:分别是1和0.想一想,在同一坐标系中作二次函数y=-3x2-1和y=-3x2的图象,会是什么样?二次项系数为正数-3,开口向下;开口大小相同;对称轴都是y轴;增减性与也相同.顶点不同,分别是原点(0,0)和(0,-1).二次函数y=3x2+1的图象形状与y=3x2一样,仍是抛物线.二次函数y=-3x2-1的图象是什么形状?它与二次
7、函数y=-3x2的图象有什么相同和不同?它的开口方向、对称轴和顶点坐标分别是什么?位置不同;最大值不同:分别是0和-1.请你总结二次函数y=ax2+c的图象和性质.二次函数y=ax2+c的图象和性质1.顶点坐标与对称轴2.位置与开口方向3.增减性与最值抛物线顶点坐标对称轴位置开口方向增减性最值y=ax2+c(a>0)y=ax2+c(a<0)(0,c)(0,c)y轴y轴当c>0时,在x轴的上方(经过一,二象限);当c<0时,与x轴相交(经过一,二三四象限).当c<0时,在x轴的下方(经过三,四象限);当c>0时,与x