岳Greenhouse gas emissions from two-stage landfilling of municipal solid waste .pdf

岳Greenhouse gas emissions from two-stage landfilling of municipal solid waste .pdf

ID:49921451

大小:403.40 KB

页数:5页

时间:2020-03-05

上传者:Adam
岳Greenhouse gas emissions from two-stage landfilling of municipal solid waste .pdf_第1页
岳Greenhouse gas emissions from two-stage landfilling of municipal solid waste .pdf_第2页
岳Greenhouse gas emissions from two-stage landfilling of municipal solid waste .pdf_第3页
岳Greenhouse gas emissions from two-stage landfilling of municipal solid waste .pdf_第4页
岳Greenhouse gas emissions from two-stage landfilling of municipal solid waste .pdf_第5页
资源描述:

《岳Greenhouse gas emissions from two-stage landfilling of municipal solid waste .pdf》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

AtmosphericEnvironment55(2012)139e143ContentslistsavailableatSciVerseScienceDirectAtmosphericEnvironmentjournalhomepage:www.elsevier.com/locate/atmosenvGreenhousegasemissionsfromtwo-stagelandfillingofmunicipalsolidwasteYuanyuanZhang,DongbeiYue*,YongfengNieKeyLaboratoryforSolidWasteManagementandEnvironmentSafety,MinistryofEducationofChina,TsinghuaUniversity,Beijing100084,ChinaarticleinfoabstractArticlehistory:SimulationswereconductedtoinvestigategreenhousegasemissionsfromaerobicpretreatmentandReceived24October2011subsequentlandfilling.Theflowsincarbonbalance,suchasgas,leachate,andsolidphases,wereReceivedinrevisedformconsideredinthesimulations.ThetotalamountofCO2eq.decreasedasorganicremovalefficiency(ORE)16March2012increased.AtOREvaluesof0,0.30,0.41,and0.54,thetotalamountsofCO2eq.were2614,2326,2075,Accepted19March2012and1572kgCO2eq.peronetondrymatter,respectively;gasaccountedforthemaincontributiontothetotalamount.ThereductioninCO2eq.fromleachatewastheprimarypositivecontribution,accountingKeywords:for356%,174%,and100%oftotalreductionatOREvaluesof0.30,0.41,and0.54,respectively.TheCO2eq.Two-stagelandfillingfromenergyconsumptionwasthenegativecontributiontototalreduction,butthiscontributionisBiogasGreenhouseeffectconsiderablylowerthanthatfromgas.AerobicpretreatmentshortenedthelagtimeofbiogasproductionAerobicpretreatmentby74.1e97.0%,andfacilitatedthetransferoforganiccarboninsolidwastefromuncontrolledbiogasandMunicipalsolidwastehighlypollutingleachatetoaerobicallygeneratedCO2.Ó2012ElsevierLtd.Allrightsreserved.1.Introductionenhancinggascapture.Withoutahighpermeabilitylayerbeneaththelandfillcover,CH4emissionsincreasedtoasmuchas24%ofConventionallandfillingisacommonlyusedmethodforthetotalgeneratedCH4,avaluetwicehigherthanthatgeneratedwithdisposalofmunicipalsolidwaste(MSW).Duringwastedegrada-apermeablelayerinstalled.tion,aconservativepercentage(50%)ofthetotalcarboninMSWisInsomepartsofChina,landfillgasisemitteddirectlytothereleasedaslandfillgasandleachate(Jeonetal.,2007);90%oftheatmospherebecauseofthelackofcollectionsystemsandcontroldegradablecarboninthesepollutantsisusuallyconvertedintoCO2devices.Althoughanactivegasrecoverysystemisused,recoveryandCH4(Huber-Humeretal.,2011).CH4producedatsolidwasteefficiencyislowerthan20%(Raningeretal.,2007)becauseofthelandfillsitescontributesapproximately12e18%ofannualglobaluniquecharacteristicsofbiogasproducedbyfoodwaste.MSWinanthropogenicmethaneemissions(Bogneretal.,2008;USEPA,Chinatypicallycontainsahighamountoffoodwaste,aswellas2006).GiventhatCH4isapowerfulgreenhousegas,recoveryofminimalpaperandotherslowlydegradableorganics.Inalandfill,landfillgasthroughengineeredsystemscanprovideenvironmentalbiogasfromfoodwasteisgeneratedataconsiderablyshortertimeandenergybenefitsbyreducingsurfaceemissionsandbyservingandfasterratethanisbiogasfrompaper.Ahighfoodcontentinasanalternativeenergysource.Theefficiencyoflandfillgaswastealsocausessevereacidaccumulation;leachatewithahighrecoverylargelydependsonoperatingconditions.ParkandShinCODconcentrationnegativelyaffectsthepotentialproductionof(2001)investigatedtheeffectsofforcedextractiononlandfillgasmethanefromMSWandcontributestothegreenhouseeffect.Uptoreleasedfromsurfaceemission,andfoundthattheextraction24.6%oforganiccarboninMSWwith65%foodwastewasfoundprocesscanreducefugitivelandfillgasemissionsfrom30%to6%ofreleasedintoleachate,whereasonly6.4%oforganiccarboninMSWtotalgeneratedemissions.Spokasetal.(2006)assessedCH4masswith9.2%foodwastereleasedintoleachate(Chen,2010).Acidbalanceatthreelandfillswithanactivelandfillgasrecoveryaccumulationinhibitsmethaneproductionandprolongslandfillsystem.Theauthorsfoundagasrecoveryof35%foranoperatingstabilisation.cell;65%foratemporarilycoveredcell;85%foracellwithafinalAerobicpretreatmentofMSWreduceswastemassandclaycover;and90%foracellwithafinalgeomembranecover.Jungimproveslandfillprocesses.WhentheMSWthatisdisposedofinetal.(2011)estimatedtheeffectofahighpermeabilitylayeronalandfillhasbeenaerobicallypretreated,leachatepollutionloadandbiogasproductionpotentialareconsiderablydiminished(LeikamandStegmann,1999;Zachetal.,2000;Kuruparanetal.,*Correspondingauthor.Tel.:þ861062773693;fax:þ861062773693.2003;Lornageetal.,2007;Maharetal.,2009).However,theE-mailaddress:yuedb@tsinghua.edu.cn(D.Yue).effectofaerobicpretreatmentongreenhousegasemissionsduring1352-2310/$eseefrontmatterÓ2012ElsevierLtd.Allrightsreserved.doi:10.1016/j.atmosenv.2012.03.056 140Y.Zhangetal./AtmosphericEnvironment55(2012)139e143theentiretwo-stagelandfillinghasbeenrarelyinvestigated.Thisstudyaimstoestimatetheeffectofaerobicpretreatmentongreenhousegasemissionsduringtwo-stagelandfillingandconse-quentlyrevealtheroleofaerobicpretreatmentpriortolandfilling.Threemajorissueswerestudied.First,carbonbalancewasobservedtodeterminethecharacteristicsofcarbonflow.Second,cumulativegasproductioncurveswerepredictedusingaGompertzmathematicalmodel,fromwhichgasgenerationratecanbeeffectivelydescribed.Third,thetotalamountofCO2andCH4emissionswereobserved,andtheeffectofaerobicpretreatmentonthegreenhouseeffectcausedbythesepollutantsarediscussedtoassessthegreenhousegasemissionsfromtwo-stagelandfillinginChina.2.Materialsandmethods2.1.MSWA500kgMSWsamplewasobtainedfromalandfillinBeijing,China.Thecompositionofthesample(Table1)wasdeterminedbymanualsorting.ThissampleisinitialwasteA0.Themoisture(wetbasis),volatilesolid(VS),andtotalcarboncontentsofthesampleFig.1.Schemeofthereactorwithchangeableaerobicandanaerobicoperation.were64.5%,65.1%,and34.9%,respectively.usingacarbon-hydrogen-nitrogenanalyser(EquipmentCE440;2.2.ColumnexperimentsEAIUSA).CODwasmeasuredusingthepotassiumdichromate2.2.1.Aerobicpretreatmentstagemethod.CO2andCH4weremeasuredwithaGA2000þlandfillgasanalyser.Asetofcolumnexperimentsinwhichfivereactors(R0eR4)wereused,wereperformedfor0de50d.Thereactors,withan2.3.2.Definitionofaerobicpretreatmentinternaldiameterof500mmandaheightof750mm,aremadeofTodepictthevarioustwo-stagelandfillingprocesses,organichigh-densitypolyethylene(Fig.1).removalefficiency(ORE)isusedtodenotetheendpointoftheEachreactorwasfilledwith77.5kg(wetweight)ofA0ataerobicpretreatment:aheightof60cm.Afteraerobicpretreatment,thewastesfromR0eR4werecollectedfordetailedcharacteristicanalysisandVSinitialVSpretreatedanaerobicexperiments.ThepretreatedwastesfromR0,R1,R2,R3,ORE¼(1)andR4werelabelledA0,A1,A2,A3,andA4,respectively.TheVSinitialaerobicoperationmodesandcharacteristicsofwastesA1eA4areTheOREvalueofR0was0.TheVSofA1eA4decreasedfromdescribedelsewhere(Zhangetal.,2012).aninitialvalue65.1%e49.6%,45.2%,38.2%,and30.0%,respectively.TheOREvaluesofR1eR4were0.23,0.30,0.41,and0.54,2.2.2.Anaerobictreatmentstagerespectively.WastesA0eA4(wetmass,0.12kge0.15kg)weresampledandplacedintofive500mLflintglasssolutionbottleswithrubber2.3.3.Carbonbalancestoppers.Thebottleswerekeptinawaterbathat37C.TherubberCarbonbalanceiscalculatedtopresentthecarbonflowthroughstopperhadtwoholesfortubeinsertion.Onetubewasforairwastedegradationusing(2).sampling,andtheotherwasformeasuringcumulativebiogas,performedbydischargingsaturatedsaltwater(Fig.2).BeforetheCarboninitialwaste¼CarbonleachateþCarbongasexperiment,thebottlesweresealedandflushedwithnitrogenforþCarbonfinalwasteþCarbonothers(2)1mintoensureanaerobicconditions.whereCarboninitialwasteandCarbonfinalwastearecalculatedfromthe2.3.Methodsmeasuredmassesandcarbonconcentrationsbyelementanalysis;CarbonleachateiscalculatedfromleachatevolumeandCOD2.3.1.AnalyticalmethodsconcentrationusingtheTOC-to-CODratio,1/3(Wangetal.,2008);MoisturecontentwasdeterminedbyheatingthegroundsampleCarbongasiscalculatedfromgasvolumeandthevolumepercentageto105Cfor24h,andtheresultswereexpressedaswetbasis.TheofCO2andCH4,afterwhichtheformulaPV¼nRTisusedtoobtainVScontentwasdeterminedbyashingthedrysamplesat550Cforthemasscarboninbiogas;andCarbonothersdenotestheminor3hinamufflefurnace.WastesA0eA4(about10kgwetmasseach)compositionsofcarbon,suchasvolatileorganiccompoundswerecollectedfromR0eR4,driedtoaconstantweightat105C,(VOCs),aswellastheunavoidablecarbonlossduringtheexperi-groundintofinepowderwithavibrationmill,andthenusedforment.VOCsaccountforlessthan1%(v/v)oftypicallandfillelementalanalysis.ThetotalcarboninthesamplewasmeasuredgasesdhundredsoftimessmallerthancarbonfluxasCH4andCO2.Table1CompositionoffreshMSWsample(w/w).ComponentsFoodwastePaperTextileWoodPlastic&rubberMetalGlassStoneOthers%62.712.93.71.05.80.31.73.87.3 Y.Zhangetal./AtmosphericEnvironment55(2012)139e143141whenMSWistreatedbyaerobicpretreatmentandlandfilling,carboninsolidwasteisreleasedintotheatmosphereintheformofCO2.Thetotalcarbonconcentrationinleachateislow(4.0e6.3%)inthetwostages.Duringtheaerobicpretreatment,thetotalcarbonreleasedwas30.1e51.6%.TheamountofcarbonemissionincreasedwithincreasingORE.Thegascarbon-to-liquidcarbonratiosofR1eR4were11.1,13.4,21.2,and22.9,respectively,indicatingthatthemajorityoforganiccarbonisreleasedasCO2.Duringthesubsequentlandfilling,thetotalcarbonreleasedwas12.3e47.3%.AtFig.2.Schemeoftheanaerobiccell.anOREvalueof0,theamountofcarbonreleasedasleachatewas23.3%.WhenORErangedfrom0.23to0.54,thecarbonreleasedasInthispaper,Carbonotherswasdisregarded.Freedetal.,2004sug-leachatewaslowat1.5e4.2%.ThisresultindicatesthataerobicgestedthatVOCsplayaminorroleinoverallcarbonbalance.Thepretreatmentreducesorganiccarboninleachateby82.0e93.6%,threephases,i.e.,solid,leachate,andgas,wereabbreviatedasS,L,whichissimilartotheCODremovalefficiency(77e96%)andGsubscripts,respectively.IandIIwereusedtorepresenttheobservedinotherstudies(LeikamandStegmann,1999;Tränkleraerobicpretreatmentandlandfillprocesses,respectively.etal.,2002;Kuruparanetal.,2003).AtOREvaluesof0,0.23,0.30,0.41,and0.54,theamountsofcarbonconvertedintobiogas2.3.4.Characterisationofgascumulativeproductioncurveswere24.0%,14.7%,27.4%,18.2%,and9.9%,respectively.WhenOREAmathematicalmodelofbiogasproductionisproposedonthewas0,aconsiderableamountofcarbonwasreleasedasleachatebasisofthekineticmodelmodifiedfromtheGompertzgrowthandtheamountofgascarbonwaslow.WhenOREwas0.23,theequation,whichhasasigmoidshapewithaclearinflectionpointamountofgascarbonwas14.7%,lessthanthatexpectedonthe(Zwieteringetal.,1990;Zhuetal.,2009;Benbelkacemetal.,2010).basisofthetheoreticalcalculation.TheamountofgascarbonatanThemodelisproposedtodeterminethebiogasyieldpotentialasOREof0.23shouldbehigherthanthatatanOREof0.30becausefollows:theorganiccontentinwasteA1washigherthanthatinwasteA2.ThereasonforthisresultisexplainedinSection3.2.keVðtÞ¼VðmaxÞexpexpðltÞþ1þV0(3)VðmaxÞ3.2.CumulativebiogasemissionswhereV(t)isthecumulativebiogasproduction(Lkg1DM);AerobicpretreatmentnotonlyreducedthebiogasyieldsoftheV(max)denotesmaximalcumulativebiogasproduction1landfilling,butalsoaffectedthegasgenerationrate.Fig.4shows(LkgDM);krepresentsthekineticconstantofbiogasproduction11thatthecumulativebiogasproductioncurvesfromtwo-stagerate(LkgDMd);lislagtime(day);eis2.718;tdenotesthelandfillingreflecttwophenomena:onewasthatgasvolumewastimeelapsed(day);andV0isthebiogasproductionduringthe1quicklygeneratedduringtheaerobicstage,andtheotherwasthehydrolyticacidificationphase(LkgDM).Theregressionmodeltypical“S”shapedcurveintheanaerobicstage.ThesecurveswerewascompletedusingSigmaPlot10.wellfitbytheGompertzmathematicalmodel,andnon-linearregressionanalysiswasusedtoestimateVmax,k,l,andV0.3.ResultsanddiscussionTable2presentstheparametersofeachcurve.WithincreasingORE,lagtimeintheanaerobicstagedecreased3.1.Carbonbalanceby74.1e97.0%.ThedegradationtimeforR0eR4wascalculatedwhenbiogasproductionreached90%oftheVmaxduringland-Carbonflowduringthetwo-stagelandfillingwasvisiblyfilling.Aerobicpretreatmentreducedthedegradationtimebydifferentfromthatduringsinglelandfilling(Fig.3).Generally,56.9%,57.5%,66.4%,and77.0%becausesomeofthefoodwastedecomposedduringtheaerobicpretreatment,andthepretreated100wastegeneratedleachatewithlowerCOD,especiallyduringthe50080ORE0AerobicORE0.23400ORE0.3060ORE0.41ORE0.5430040Carbondistribution(%)200201000Cumulativegasvolume(L/kgDM)ORE0ORE0.23ORE0.30ORE0.41ORE0.54I-LI-GII-LII-GII-S0050100150200250300350400Fig.3.Carbonbalanceduringthetwo-stagelandfillingatvariousOREvalues.I-L,I-G,II-LTime(day)II-G,andII-Srepresentleachateinaerobicpretreatment,gasinaerobicpretreatment,leachateinlandfilling,gasinlandfilling,andfinalsolidinlandfilling,respectively.Fig.4.Cumulativegasproductioninthetwo-stagelandfillingatvariousOREvalues. 142Y.Zhangetal./AtmosphericEnvironment55(2012)139e143Table2Parametersofcumulativebiogasproduction.I-EC2500II-L12OREVmaxk(LkglV0R111I-L(LkgDM)DMd)(day)(LkgDM)II-G2000IIIIIIIIIIIIIIII-G0327.83.42241.00.9940.23302.087.58.41.445805.70.9970.99015000.30301.0146.39.13.01347090.9990.9980.41366.783.011.52.096000.9940.993eq./tDM20.54365.133.813.01.658.5000.9980.9931000kgCOlandfillingacidificationstage,whicheliminatestheinhibitionof500methaneproduction.ThisresultagreeswiththoseofStegmannandHeyer(2001)andLeikamandStegmann(1999),indicatingthataerobicpretreatmentconsiderablyreducesleachateCOD.Bypass-000.300.410.54ingoftheacidphaseisalsopossible.DegradationrateconstantskintheaerobicstagewerehigherOrganicremovalefficiencythanthoseintheanaerobicstage,andtheratiosbetweenthemforFig.5.Gasemissions(CO2eq.)fromthetwo-stagelandfillingatdifferentOREvalues.I-R1eR4were6.0,3.0,5.8,and8.1,respectively.AerobicpretreatmentEC,I-L,II-L,I-G,andII-Grepresentenergyconsumptioninaerobicpretreatment,enhanceswastedegradation.Interestingly,thevalueofkduringtheleachateinaerobicpretreatment,leachateinlandfilling,gasinaerobicpretreatment,anaerobicstagedecreasedwithincreasingOREexceptforR1,whereandgasinlandfilling,respectively.kwaslowerthanexpected.Thevalueofkwasaffectedbytheproportionofeasilydecomposingorganicmatterandtheextentofsimplymultiplyingthetotalactualloadbytheoperatinghoursandmethanogenicinhibition.WhenOREincreased,theeasilydegrad-therelevantgreenhousegascoefficient(0.9kgk1Wh)ofeableorganiccontentdecreased.Fromthispoint,kofR1shouldhavesecondaryCO2(IEA/OECD,1999).ThefunctionalunitwasonetonofbeenhigherthanthatofR2,butitperformeddifferentlyprobablyoriginaldrywaste.becauseofthesevereacidificationorhighammoniaconcentration.Fig.5showsthetotalamountanddistributionofCO2eq.underIntheexperiment,thepHofleachateforR1eR4wasalmostthevariousOREvalues.TheCO2eq.fromgasaccountedforthehighestsame,between7and8,indicatingthatsevereacidificationcouldbefraction,varyingfrom50.7%to84.3%.TheCO2eq.fromenergyexcluded.AmmoniaconcentrationinR1was4800mgL1,consid-consumptioncontributedasmallproportion,withitshighesterablyhigherthanthecorrespondingconcentrationsintheotherfractionbeingonly9.0%.ThetotalamountsofCO2eq.decreasedreactors(1000e3000mgL1)atthebeginningofthedegradationwithincreasingORE.AtOREvaluesof0,0.30,0.41,and0.54,thestage.ThehigherammoniaconcentrationinR1inhibitedmethanetotalamountsofCO2eq.were2614,2326,2075,and1572kgCO2generation,aresultthatrequiresfurtherinvestigation.eq.pertondrymatter,respectively.ThisresultindicatesthatThemaximumbiogasproductionswere327.8,87.5,146.3,83.0,aerobicpretreatmentefficientlydecreasesgreenhousegasemis-and33.8Lkg1DMatOREvaluesof0,0.23,0.30,0.41,and0.54,sionsby11.0e39.9%.Aerobicpretreatmentreducestheamountsofrespectively.AttheOREvalueof0.23,VmaxwaslowpossiblyCO2eq.fromleachateby72.8e80.8%comparedwiththatobservedbecauseofthesamefactorsthataffectedk.Althoughbiogasinuntreatedwaste.ThereductioninCO2eq.fromleachateslightlyproductionwasinhibited,thegasemissionpotentialshouldnotdifferedwhenOREincreased.TheCO2eq.fromgasincreasedanddecreaseaslongastheexperimentisconductedatasufficientlythendecreasedwithincreasingORE.WhentheOREvaluewas0.54,longduration.Whengreenhousegasemissionwasdiscussed,thetheCO2eq.fromgaswassimilartothatattheOREvalueof0.TheOREvalueof0.23wasexcluded.reductioninCO2eq.fromleachatewasthemainpositivecontri-bution,accountingfor356%,174%,and100%oftotalreductionat3.3.GreenhousegasemissionsOREvaluesof0.30,0.41,and0.54,respectively.TheCO2eq.fromenergyconsumptionwasthenegativecontributiontototalreduc-Greenhousegasemissionsfromaerobicpretreatmentandtion,butthiscontributionwasmuchlowerthanthatofgas.subsequentlandfillingatvariousOREvalueswereinvestigated.WeconsideredthegreenhouseeffectofCH4,whichis21timesmore4.ConclusionpowerfulthanthatofCO2(basedonweightanda100-yearperiod),andthecharacteristicsofcarbonflowduringthetwo-stageland-Carbonbalanceandgreenhousegasemissionsfromaerobicfilling,whichenabledcarbontransferintogasandtheconversionpretreatmentandsubsequentlandfillingwithvariouspretreat-ofmoreorganiccarbonintoCO2insteadofCH4.mentlevelswereinvestigated.TheCO2eq.fromgasaccountedforThisstudyexaminedthreeissues:thegasgeneratedinaerobicthelargestproportionintotalamountofCO2eq.WhenOREpretreatmentandlandfilling,organiccarbonintheleachate,andincreased,thetotalCO2eq.amountdecreased,accountingforsecondaryCO2producedbyenergyconsumptionduringaerobic89.0%,79.3%,and60.1%ofthatofsinglelandfillingatOREvaluesofpretreatment.Thegasgeneratedintheaerobicpretreatmentis0.30,0.41,and0.54,respectively.ThereductioninCO2eq.wasconsideredCO2.Theamountoflandfillgaswascalculatedaccord-apositivecontributionofleachate.TheincreaseinCO2eq.fromingtotheexperimentaldata;theactuallandfilloperationwasenergyconsumptionandgasaccountedforthenegativecontribu-disregardedbecausebiogascollectionefficiencyandfugitivetiontoCO2eq.reduction,andthefunctionoftheformerwasmuchamountinlandfillsvarylargely.Theorganiccarboninleachateislowerthanthelatter.Aerobicpretreatmentcanfacilitatethealsoconsideredcontributorytothegreenhouseeffect,assumingtransferoforganiccarboninsolidwastefromuncontrolledthatbiogaswasgeneratedas50%CO2and50%CH4,accordingtothebiogasandhighlypollutingleachatetoaerobicallygeneratedCO2.defaultvaluesofIPCC2006.TheCO2producedbyenergyTwo-stagelandfillingcancontributetoaconsiderablereductioninconsumption(EC)duringaerobicpretreatmentwascalculatedbythegreenhouseeffect. Y.Zhangetal./AtmosphericEnvironment55(2012)139e143143AcknowledgementsLeachateCharacteristicsandLandfillSettlement.Workshopon“SustainableLandfillManagement”AnnaUniversity,Chennai,India.Leikam,K.,Stegmann,R.,1999.Influenceofmechanical-biologicalpretreatmentofThisprojectissupportedbyTsinghuaUniversityInitiativemunicipalsolidwasteonlandfillbehavior.WasteManagementandResearch17,ScientificResearchProgramandSpecialFundofEnvironmental424e429.ProtectionResearchforPublicWelfareofChina(NOs.201109035&Lornage,R.,Redon,E.,Lagier,T.,Hébé,I.,Carré,J.,2007.PerformanceofalowcostMBTpriortolandfilling:studyofthebiologicaltreatmentofsizereducedMSW201209022).withoutmechanicalsorting.WasteManagement27,1755e1764.Mahar,R.,Liu,J.,Li,H.,Nie,Y.,2009.Bio-pretreatmentofmunicipalsolidwastepriortolandfillinganditskinetics.Biodegradation20,319e330.ReferencesPark,J.W.,Shin,H.C.,2001.Surfaceemissionoflandfillgasfromsolidwastelandfill.AtmosphericEnvironment35,3445e3451.Benbelkacem,H.,Bayard,R.,Abdelhay,A.,Zhang,Y.,Gourdon,R.,2010.EffectofRaninger,B.,Li,R.D.,Feng,L.,Luo,X.S.,2007.ResourcerecoveryandUtilisationofleachateinjectionmodesonmunicipalsolidwastedegradationinanaerobicBioorganicWaste(BMW):anintegratedelementofanecologicallysoundandbioreactor.BioresourceTechnology101,5206e5212.sustainablecitydevelopmentinChina.In:InternationalConferenceonBogner,J.,Pipatti,R.,Hashimoto,S.,Diaz,C.,Mareckova,K.,Diaz,L.,Kjeldsen,P.,SustainableSanitationEco-citiesandVillages,China,27e31August2007.Monni,S.,Faaij,A.,Gao,Q.X.,Zhang,T.Z.,Ahmed,M.A.,Sutamihardja,R.T.M.,Spokas,K.,Bogner,J.,Chanton,J.P.,Morcet,M.,Aran,C.,Graff,C.,Golvan,Y.M.L.,Gregory,R.,2008.Mitigationofglobalgreenhousegasemissionsfromwaste:Hebe,I.,2006.Methanemassbalanceatthreelandfillsites:whatistheeffi-conclusionsandstrategiesfromtheintergovernmentalpanelonclimatechangeciencyofcapturebygascollectionsystems?WasteManagement26,516e525.(IPCC)fourthassessmentreport.WorkinggroupIII(mitigation).WasteStegmann,R.,Heyer,K.U.,2001.Landfillconceptformechanical-biologicallytreatedManagementandResearch26,11e32.residualwaste.In:Christensen,Cossu,Stegmann(Eds.),SARDINIA2001,8thChen,X.Y.,2010.Long-termlandfillsimulationteststoestimatethebiogaspotentialInternationalLandfillSymposium,Proceedings,CISA,ViaMarengo34,09123emissionfromChineseMSWlandfills.ShenyangAerospaceuniversity,She-Cagliari,Italy.nyang.(ThesisinChinese).Tränkler,J.,Ranaweera,R.M.,Visvanathan,C.,2002.MechanicalbiologicalFreed,J.R.,Skog,K.,Glick,N.,Mintz,C.,2004.CarbonstorageduetodisposalofpretreatmenteacasestudyforhitsanuloklandfillinThailand.In:2ndAsiabiogenicmaterialsinU.S.landfills.In:ProceedingsoftheThirdAnnualPacificLandfillSymposium,25e28September2002,Seoul,Korea.ConferenceonCarbonSequestration.U.S.DeptofEnergy,NationalEnergyUSEPA,2006.UnitedStatedEnvironmentalProtectionAgencyGlobalMitigationofTechnologyLab.Non-CO2GreenhouseGas.3.LandfillSector.USEnvironmentalProtectionHuber-Humer,M.,Kjeldsen,P.,Spokas,K.A.,2011.SpecialissueonlandfillgasAgency,WashingtonDC,USA.emissionandmitigation.WasteManagement31,821e822.Wang,F.,Chang,J.,Li,L.,Li,Q.,2008.RelevanceofCODCrandTOCinlandfillIEA/OECD,1999.CO2EmissionsfromFuelCombustion.leachate.JournalofAnhuiAgriculturalScience36,6494e6495(inChinese).IntergovernmentalPanelonClimateChange(IPCC),2006.IPCCGuidelinesforNationalZach,A.,Binner,E.,Latif,M.,2000.ImprovementofmunicipalsolidwastequalityforGreenhouseGasInventories.In:Agriculture,ForestryandOtherLandUse,vol.4.landfillingbymeansofmechanicalbiologicalpre-treatment.WasteManage-Jeon,E.J.,Bae,S.J.,Lee,D.H.,Seo,D.C.,Chun,S.K.,Lee,N.H.,Kim,J.Y.,2007.MethanementandResearch18,25e32.generationpotentialandbiodegradabilityofMSWcomponents.In:EleventhZhang,Y.,Yue,D.,Liu,J.,Lu,P.,Wang,Y.,Liu,J.,Nie,Y.,2012.ReleaseofnonmethaneInternationalWasteManagementandLandfillSymposium,S.MargheritadiorganiccompoundsduringsimulatedlandfillingofaerobicallypretreatedPula,Cagliari,Italy;1e5October2007.municipalsolidwaste.JournalofEnvironmentalManagement101,54e58.Jung,Y.,Imhoff,P.T.,Augenstein,D.,Yazdani,R.,2011.MitigatingmethaneemissionsZhu,B.N.,Gikas,P.,Zhang,R.H.,Lord,J.,Jenkins,B.,Li,X.J.,2009.Characteristicsandandairintrusioninheterogeneouslandfillswithahighpermeabilitylayer.biogasproductionpotentialofmunicipalsolidwastespretreatedwitharotaryWasteManagement31,1049e1058.drumreactor.BioresourceTechnology100,1122e1129.Kuruparan,P.,Tubtimthai,O.,Visvanathan,C.,Tränkler,J.,2003.InfluenceofZwietering,M.H.,Jongenburger,I.,Rombouts,F.M.,Van’tRiet,K.,1990.ModellingtheTropicalSeasonalVariationsOperationModesandWasteCompositiononbacterialgrowthcurve.AppliedandEnvironmentMicrobiology56,1875e1881.

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
关闭