资源描述:
《2012高考第一轮复习【理科数学】第6单元第31讲 数列的概念与通项公式精品课件.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、1第31讲数列的概念及通项公式21.了解数列的概念和几种简单的表示方法(列表、图象、通项公式).2.了解数列是自变量为正整数的一类函数.3.会用观察法、递推法等求数列的通项公式.31.以下关于数列的叙述:①数列是以正整数集为定义域的函数;②数列都有通项,且是惟一的;③数列只能用通项公式的方法来表示;④既不是递增也不是递减的数列,则为常数列;⑤数列1,1,2,3,5,8与数列8,5,3,2,1,1是同一数列;⑥对所有的n∈N*,都有an+3=an,则数列{an}是以3为周期的周期数列.其中正确的结论有()BA.0个B.1个C.3个D.5个4本题是考查数列及相关概念的题,在解题过程中,每一个叙述都
2、有可能判断错误,故需一一给予剖析:命题①,数列可以看作是一个定义域为正整数集N+(或它的有限子集{1,2,3,…,n})的函数;命题②,不是每一个数列都有通项,有的数列不存在通项;另外,有通项公式的数列,通项公式也不一定惟一;命题③,数列除了用通项公式表示外还可以用列表法和图象法表示;命题④,数列存在递增数列、递减数列、常数数列,还有摆动数列;命题⑤,数列是有序的;⑥正确.解析52.数列-1,7,-13,19,…的一个通项公式是an=.(-1)n(6n-5)符号问题可通过(-1)n或(-1)n+1表示,其各项的绝对值的排列规律为:后面的数的绝对值总比它前面数的绝对值大6,故通项公式为an=(-
3、1)n(6n-5).解析63.如果数列{an}的前n项的和Sn=n2,那么这个数列的通项公式是.an=2n-1a1=S1=1,所以a1=1,当n≥2时,an=Sn-Sn-1=2n-1.经检验,a1符合上式,所以an=2n-1.解析7解析89解析101.数列的概念(1)数列是按一定①排列的一列数,记作a1,a2,a3,…,an,…,简记{an}.(2)数列{an}的第n项an与项数n的关系若能用一个公式an=f(n)给出,则这个公式叫做这个数列的②.顺序通项公式11(3)数列可以看做定义域为N*(或其子集)的函数,当自变量由小到大依次取值时,对应的一列函数值,它的图象是一群③.2.数列的表示方法
4、数列的表示方法有:列举法、图示法、解析法(用通项公式表示)和递推法(用递推关系表示).孤立的点123.数列分类(1)按照数列的项数分④、.(2)按照任何一项的绝对值是否超过某一正常数分:⑤、.(3)从函数单调性角度考虑分:递增数列、⑥、常数列、⑦.4.数列通项an与前n项和Sn的关系(1)Sn=a1+a2+a3+…+an;(2)an=⑧.有穷数列无穷数列有界数列无界数列递减数列摆动数列S1(n=1)Sn-Sn-1(n≥2)13求下列数列的一个通项公式:(1)1,-1,1,-1,…;(2)3,5,9,17,33,…;(3),2,,8,,…;(4)1,0,-1,0,1,0,-1,0,….题型一用观
5、察法写数列的通项公式例114(1)an=(-1)n+1或an=cos(n+1)π.(2)an=2n+1.(3)an=.(4)an=sin.已知数列的前n项,写出数列的通项公式,主要从以下几个方面来考虑:(1)符号用(-1)n与(-1)n+1(或(-1)n-1)来调节,这是因为n和n+1奇偶交错.解析评析15(2)分式形式的数列,分子找通项,分母找通项,要充分借助分子、分母的关系.(3)对于比较复杂的通项公式,要借助等差数列、等比数列(后面将学到)和其他方法来解决.(4)此类问题虽无固定模式,但也有其规律可循,主要靠观察(观察规律)、比较(比较已知的数列)、归纳、转化(转化为等差或等比数列)等方
6、法.16有一数列{an},a1=a,由递推公式an+1=,写出这个数列的前4项,并根据前4项观察规律,写出该数列的一个通项公式.可根据递推公式写出数列的前4项,然后分析每一项与该项的序号之间的关系,归纳概括出an与n之间的一般规律,从而做出猜想,写出满足前4项的该数列的一个通项公式.素材1分析17因为a1=a,an+1=,所以a2=,a3===,a4===.观察规律:an=形式,其中x与n的可由n=1,2,3,4得出x=2n-1.而y比x小1,所以an=.解析18从特殊的事例,通过分析、归纳,总结出一般规律,再进行科学地证明,这是创新意识的具体体现,这种探索问题的方法,在解数列的有关问题中经常
7、用到,应引起足够的重视.评析19已知数列{an}的前n项和为Sn,分别求其通项公式.(1)Sn=3n-2;(2)Sn=(an+2)2(an>0).题型二利用数列前n项和公式求通项例220(1)当n=1时,a1=S1=1;当n≥2时,an=Sn-Sn-1=3n-2-(3n-1-2)=2·3n-1.由于a1=1不适合上式,因此数列{an}的通项公式为1(n=1)2·3n-1(n∈N*,且n≥2).an