欢迎来到天天文库
浏览记录
ID:49884934
大小:635.50 KB
页数:18页
时间:2020-02-29
《“角边角”“角角边”判定 (5).ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、4.3探索三角形全等的件(二)复习1、已知AB=DC,AC=DB,那么∠A与∠D相等吗?说明理由.∵AB=DC()AC=DB()BC=CB()∴△ABC≌△DCB()∴∠A=∠DABCD已知已知公共边SSS(全等三角形的对应角相等)解:在△ABC和△DCB中2、已知AC=AD,BC=BD,那么AB是∠DAC的平分线.证明:∵AC=AD()BC=BD()AB=AB()∴△ABC≌△ABD()∴∠1=∠2∴AB是∠DAC的平分线ABCD12(全等三角形的对应角相等)已知已知公共边SSS我们知道:如果给出一个三角形三条边的长度,那么因此得到的三角形都是全等.如果
2、已知一个三角形的两角及一边,那么有几种可能的情况呢?每种情况下得到的三角形都全等吗?1、角.边.角;2、角.角.边做一做1、角.边.角;若三角形的两个内角分别是60°和80°它们所夹的边为4cm,你能画出这个三角形吗?4cm60°80°你画的三角形与同伴画的一定全等吗?60°80°2、角.角.边若三角形的两个内角分别是60°和40°,且40°所对的边为4cm,你能画出这个三角形吗?60°40°60°40°分析:这里的条件与1中的条件有什么相同点与不同点?你能将它转化为1中的条件吗?80°两角和它们的夹边对应相等的两个三角形全等,简写成“角边角”或“ASA”
3、两角和其中一角的对边对应相等的两个三角形全等,简写成“角角边”或“AAS”练一练:1、完成下列推理过程:在△ABC和△DCB中,∠ABC=∠DCB∵BC=CB∴△ABC≌△DCB()ASAABCDO1234()公共边∠2=∠1AAS∠3=∠4∠2=∠1CB=BC2、请在下列空格中填上适当的条件,使△ABC≌△DEF。在△ABC和△DEF中∵∴△ABC≌△DEF()ABCDEFSSSAB=DEBC=EFAC=DFASA∠A=∠DAB=DE∠B=∠DEFAC=DF∠ACB=∠FAAS∠B=∠DEFBC=EF∠ACB=∠FBC=EF想一想:如图,O是AB的中点,
4、∠A=∠B,△AOC与△BOD全等吗?为什么?ABCDO我的思考过程如下:两角与夹边对应相等∴△AOC≌△BOD补充练习:DCBA1、在△ABC中,AB=AC,AD是边BC上的中线,证明:∠BAD=∠CAD证明:∵AD是BC边上的中线 ∴BD=CD(三角形中线的定义)在△ABD和△ACD中∴△ABD≌△ACD(SSS)∴∠BAD=∠CAB(全等三角形对应角相等)AD是∠BAC的角平分线。求证:BD=CD证明:∵AD是∠BAC的角平分线(已知)∴∠BAD=∠CAD(角平分线的定义)∵AB=AC(已知)∠BAD=∠CAD(已证)AD=AD(公共边)∴△AB
5、D≌△ACD(SAS)∴BD=CD(全等三角形对应边相等)ABCDE12如图,已知 ∠C=∠E,∠1=∠2,AB=AD,△ABC和△ADE全等吗?为什么?解:△ABC和△ADE全等。 ∵∠1=∠2(已知) ∴∠1+∠DAC=∠2+∠DAC即∠BAC=∠DAE在△ABC和△ADC中∴△ABC≌△ADE(AAS)BCDEA如图:已知AB=AC,∠B=∠C,△ABD与△ACE全等吗?为什么?∴△ABD≌△ACE(ASA)AE=AD,∠B=∠C,∠B=∠C∠A=∠AAD=AEAAS若△ABC中,∠A=30°,∠B=70°,AC=5cm,△
6、DEF中∠D=70°∠E=80°,DE=5cm,那么△ABC与△DEF全等吗?为什么?课堂小结:本节课我们经历了对符合两角一边的条件的所有三角形进行画图验证,探索出三角形全等的另两个定理 ,它们分别是:1)两角和它们的夹边对应相等的两个三角形全等(ASA);2)两角和其中一角的对边对应相等的两个三角形全等(AAS)。再加上前面学的(SSS),证明两个三角形全等共有三个定理,我们要学会根据题目给出的条件选用合适的定理来证明两个三角形全等。作业:习题第1、2、3题
此文档下载收益归作者所有