欢迎来到天天文库
浏览记录
ID:49687749
大小:3.25 MB
页数:138页
时间:2020-03-01
《初三数学圆的复习课件_人教版.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、知识体系圆基本性质直线与圆的位置关系圆与圆的位置关系概念对称性垂径定理圆心角、弧、弦之间的关系定理圆周角与圆心角的关系切线的性质切线的判定切线的作图弧长、扇形面积和圆锥的侧面积相关计算正多边形和圆位置分类性质公切线的作图关系定理有关计算圆的有关性质圆的定义(运动观点)在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆。固定的端点O叫做圆心,线段OA叫做半径,以点O为圆心的圆,记作☉O,读作“圆O”圆的定义辨析篮球是圆吗?圆必须在一个平面内以3cm为半径画圆,能画多少个?以点O为圆心画圆,能画多少个?由此,你发现半径和圆心
2、分别有什么作用?半径确定圆的大小;圆心确定圆的位置圆是“圆周”还是“圆面”?圆是一条封闭曲线圆周上的点与圆心有什么关系?圆的定义(集合观点)圆是到定点的距离等于定长的点的集合。圆上各点到定点(圆心)的距离都等于定长(半径);到定点的距离等于定长的点都在圆上。一个圆把平面内的所有点分成了多少类?你能模仿圆的集合定义思想,说说什么是圆的内部和圆的外部吗?点与圆的位置关系圆是到定点(圆心)的距离等于定长(半径)的点的集合。圆的内部是到圆心的距离小于半径的点的集合。圆的外部是到圆心的距离大于半径的点的集合。由此,你发现点与圆的位置关系是由什么来决定的呢?如果圆的半径为
3、r,点到圆心的距离为d,则:点在圆上d=r点在圆内dr与圆有关的概念弦和直径什么是弦?什么是直径?直径是弦吗?弦是直径吗?弧与半圆什么是圆弧(弧)?怎样表示?弧分成哪几类?半圆是弧吗?弧是半圆吗?弓形是什么?同心圆、同圆、等圆和等弧怎样的两个圆叫同心圆?怎样的两个圆叫等圆?同圆和等圆有什么性质?什么叫等弧?点的轨迹把符合某一条件的所有的点所组成的图形,叫做符合这个条件的点的轨迹。图形上的任何一点都符合条件;符合条件的任何一点都在图形上。圆是什么点的轨迹?垂直平分线是什么点的轨迹?角平分线是什么点的轨迹?圆的有关性质过三点的圆思考:确定一条
4、直线的条件是什么?类比联想:是否也存在由几个点确定一个圆呢?讨论:经过一个点,能作出多少个圆?经过两个点,如何作圆,能作多少个?经过三个点,如何作圆,能作多少个?经过三角形的三个顶点的圆叫做三角形的外接圆,外接圆的圆心叫做三角形的外心,三角形叫做圆的内接三角形。问题1:如何作三角形的外接圆?如何找三角形的外心?问题2:三角形的外心一定在三角形内吗?∠C=90°▲ABC是锐角三角形▲ABC是钝角三角形垂直于弦的直径及其推论从特殊到一般想一想:将一个圆沿着任一条直径对折,两侧半圆会有什么关系?性质:圆是轴对称图形,任何一条直径所在的直线都是它的对称轴。观察右图,有
5、什么等量关系?垂直于弦的直径AO=BO=CO=DO,弧AD=弧BC,弧AC=弧BD。AO=BO=CO=DO,弧AD=弧BC=弧AC=弧BD。AO=BO=CO=DO,弧AD=弧BD,弧AC=弧BC,AE=BE。垂径定理垂径定理垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。判断下列图形,能否使用垂径定理?注意:定理中的两个条件(直径,垂直于弦)缺一不可!定理辨析练习OABE若圆心到弦的距离用d表示,半径用r表示,弦长用a表示,这三者之间有怎样的关系?变式1:AC、BD有什么关系?变式2:AC=BD依然成立吗?变式3:EA=____,EC=_____。FDFB变
6、式4:______AC=BD.OA=OB变式5:______AC=BD.OC=OD变式练习如图,P为⊙O的弦BA延长线上一点,PA=AB=2,PO=5,求⊙O的半径。MAPBO辅助线关于弦的问题,常常需要过圆心作弦的垂线段,这是一条非常重要的辅助线。圆心到弦的距离、半径、弦长构成直角三角形,便将问题转化为直角三角形的问题。画图叙述垂径定理,并说出定理的题设和结论。题设结论①直线CD经过圆心O②直线CD垂直弦AB③直线CD平分弦AB④直线CD平分弧ACB⑤直线CD平分弧AB想一想:如果将题设和结论中的5个条件适当互换,情况会怎样?①③②④⑤②③①④⑤①④②③⑤②
7、④①③⑤①②⑤①②④④⑤①②③③④③⑤(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦并且平分弦所对的另一条弧。推论1如图,CD为⊙O的直径,AB⊥CD,EF⊥CD,你能得到什么结论?推论2弧AE=弧BF圆的两条平行弦所夹的弧相等。FOBAECD圆心角、弧、弦、弦心距之间的关系圆的性质圆是轴对称图形,每一条直径所在的直线都是对称轴。圆是以圆心为对称中心的中心对称图形。圆还具有旋转不变性,即圆绕圆心旋转任意一个角度α,都能与原来的图形重合。圆心角:顶
8、点在圆心的角。(如:∠AOB)C弦心距
此文档下载收益归作者所有