欢迎来到天天文库
浏览记录
ID:49632075
大小:454.50 KB
页数:24页
时间:2020-02-26
《平行线的判定(1)课件.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、每日一句5.2.2平行线的判定(第一课时)1、掌握平行线的三种判定方法,会运用判定方法来判断两条直线是否平行;2、能够根据平行线的判定方法进行简单的推理.学习目标复习巩固1、在同一平面内,两直线的位置关系有__________相交或平行2、平行公理:经过直线外一点,_________一条直线与这条直线平行。有且只有3、思考:我们是怎样画出过这一点的这条直线呢?12观察思考讨论交流ab.A1、画图过程中直尺起到了什么作用?∠1和∠2是什么位置关系的角?2、在三角板移动的过程中,∠1和∠2的大小发生变化了吗?3、要判断a//b你有办法了吗?两条直线被第三条直线所截,如果相等,那么这两条
2、直线。简单说成:同位角相等,两直线平行平行线的判定方法112abc同位角平行1、如图所示,已知∠1=60°,当∠2=___°时,a∥b。2ab1c小试牛刀2、如图所示,已知∠1=60°,当∠3=___°时,a∥b。2ab1c33、如图,当∠C=____时,BE∥CF。4、如图,当∠CBE=∠A,则_∥_思考两条直线被第三条直线所截,同时得到同位角、内错角和同旁内角,由同位角相等可以判定两直线平行,那么,能否利用内错角和同旁内角来判定两直线平行呢?abc123解:∵∠1=∠3(对顶角相等)∴∠1=∠2(等量代换)∴a∥b(同位角相等,两直线平行)如果∠2=∠3,能否推出a//b呢?∠2
3、=∠3(已知)讨论同位角相等,两直线平行平行线的判定方法2两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.内错角相等,两直线平行.简单说成:abc231、如图所示,已知∠1=50°,当∠2=___°时,a∥b。a聪明的你,你肯定行2、如图所示,已知∠1=70°,当∠3=___°时,a∥b。b1c2b1c233、如图,当∠C=____时,BC∥AD。4、如图,能判断AB∥CE的条件是_____如果∠2+∠4=180o,能得到a//b吗?解:∵∠1+∠4=180o∠2+∠4=180o∴∠1=∠2(同角的补角相等)∴a∥b(同位角相等、两直线平行)还有其他解法吗?abc123
4、4讨论简单说成:同旁内角互补,两直线平行平行线的判定方法3两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.abc12341、如图所示,已知∠1=50°,当∠2=___°时,a∥b。再次证明自己ab1c22、如图,当∠C+∠__=1800时,BC∥AD。如图所示:AC与BD相交于O,∠C=∠COD,∠A=∠AOB,求证:AB∥CD例题讲解已知∠3=45°,∠1与∠2互余,你能得到?解∵∠1+∠2=90°∠1=∠2∴∠1=∠2=45°∵∠3=45°∴∠2=∠3∴AB∥CD123ABCDAB//CD例题23、如图,AB、CD、EF是直线,∠1+∠2=180°,求证:AB∥C
5、D.(1)∵∠1=∠B(已知)∴__∥__((3)∵∠_=∠_(已知)∴AB∥CD()ADBC同位角相等,两直线平行)(2)∵∠1=∠D(已知)∴∥()35内错角相等,两直线平行ABDC内错角相等,两直线平行请你试一试(4)∵∠B+∠BAD=180°(已知)∴∥()ADBC同旁内角互补,两直线平行同位角相等内错角相等同旁内角互补两直线平行平行线的判定示意图判定数量关系位置关系小结体验成功——达标检测∠C=61当∠ABE=度时,EF∥CN当∠CBF=度时,EF∥CN。1、如图ABCNEF61612、如图(1)∵∠1=∠4(已知)∴___∥___()(2)∵∠___=∠___(已知)∴A
6、D∥BC()(3)∵∠5=∠____(已知)∴AB∥CD()(4)∵∠A+∠ABC=1800(已知)∴___∥___()13245ABCDABCD23ABC当∠CBE=度时,EF∥CN119ADBC3、如图,∠A=37º,∠D=53º,DE⊥AE,AE交CD于点C,垂足为E,求证AB∥CD.选做题ABDFCE2134如图,BC、DE分别平分ABD和BDF,且1=2,请找出平行线,并说明理由。谢谢!
此文档下载收益归作者所有