欢迎来到天天文库
浏览记录
ID:49588710
大小:276.00 KB
页数:15页
时间:2020-02-26
《《圆》知识点复习.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、《圆》知识点复习初三总复习《圆》知识点三种位置关系垂径定理圆心角定理圆周角定理圆的内接四边形定理切线的性质与判定定理切线长定理圆内正多边形弧长、扇形面积公式侧面展开图三种位置关系点与圆直线与圆圆与圆点与圆的位置关系点在圆内dr点A在圆外直线与圆的位置关系直线与圆相离d>r无交点直线与圆相切d=r有一个交点直线与圆相交dR+r外切(图2)有一个交点d=R+r相交(图3)有两个交点R-r2、图5)无交点d3、它所对的圆心的角的一半即:∵∠AOB和∠ACB是所对的圆心角和圆周角∴∠AOB=2∠ACB圆周角定理的推论:推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧是等弧即:在⊙O中,∵∠C、∠D都是所对的圆周角∴∠C=∠D推论2:半圆或直径所对的圆周角是直角;圆周角是直角所对的弧是半圆,所对的弦是直径即:在⊙O中,∵AB是直径或∵∠C=90°∴∠C=90°∴AB是直径推论3:三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形即:在△ABC中,∵OC=OA=OB∴△ABC是直角三角形或∠C=90°注:此推论实是4、初二年级几何中矩形的推论:在直角三角形中斜边上的中线等于斜边的一半的逆定理。圆内接四边形圆的内接四边形定理:圆的内接四边形的对角互补,外角等于它的内对角。即:在⊙O中,∵四边形ABCD是内接四边形∴∠C+∠BAD=180°B+∠D=180°∠DAE=∠C切线的性质与判定定理(1)判定定理:过半径外端且垂直于半径的直线是切线两个条件:过半径外端且垂直半径,二者缺一不可即:∵MN⊥OA且MN过半径OA外端∴MN是⊙O的切线(2)性质定理:切线垂直于过切点的半径(如上图)推论1:过圆心垂直于切线的直线必过切点推论2:过切点垂直于切线的直线必5、过圆心以上三个定理及推论也称二推一定理:即:过圆心过切点垂直切线中知道其中两个条件推出最后一个条件∵MN是切线∴MN⊥OA切线长定理切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,这点和圆心的连线平分两条切线的夹角。即:∵PA、PB是的两条切线∴PA=PBPO平分∠BPA圆内正多边形的计算(1)正三角形在⊙O中△ABC是正三角形,有关计算在Rt△BOD中进行,OD:BD:OB=(2)正四边形同理,四边形的有关计算在Rt△OAE中进行,OE :AE:OA=(3)正六边形同理,六边形的有关计算在Rt△OAB中进行,AB:OB:OA6、=弧长、扇形面积公式(1)弧长公式:(2)扇形面积公式:侧面展开图(1)圆柱侧面展开图=(2)圆锥侧面展开图=
2、图5)无交点d3、它所对的圆心的角的一半即:∵∠AOB和∠ACB是所对的圆心角和圆周角∴∠AOB=2∠ACB圆周角定理的推论:推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧是等弧即:在⊙O中,∵∠C、∠D都是所对的圆周角∴∠C=∠D推论2:半圆或直径所对的圆周角是直角;圆周角是直角所对的弧是半圆,所对的弦是直径即:在⊙O中,∵AB是直径或∵∠C=90°∴∠C=90°∴AB是直径推论3:三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形即:在△ABC中,∵OC=OA=OB∴△ABC是直角三角形或∠C=90°注:此推论实是4、初二年级几何中矩形的推论:在直角三角形中斜边上的中线等于斜边的一半的逆定理。圆内接四边形圆的内接四边形定理:圆的内接四边形的对角互补,外角等于它的内对角。即:在⊙O中,∵四边形ABCD是内接四边形∴∠C+∠BAD=180°B+∠D=180°∠DAE=∠C切线的性质与判定定理(1)判定定理:过半径外端且垂直于半径的直线是切线两个条件:过半径外端且垂直半径,二者缺一不可即:∵MN⊥OA且MN过半径OA外端∴MN是⊙O的切线(2)性质定理:切线垂直于过切点的半径(如上图)推论1:过圆心垂直于切线的直线必过切点推论2:过切点垂直于切线的直线必5、过圆心以上三个定理及推论也称二推一定理:即:过圆心过切点垂直切线中知道其中两个条件推出最后一个条件∵MN是切线∴MN⊥OA切线长定理切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,这点和圆心的连线平分两条切线的夹角。即:∵PA、PB是的两条切线∴PA=PBPO平分∠BPA圆内正多边形的计算(1)正三角形在⊙O中△ABC是正三角形,有关计算在Rt△BOD中进行,OD:BD:OB=(2)正四边形同理,四边形的有关计算在Rt△OAE中进行,OE :AE:OA=(3)正六边形同理,六边形的有关计算在Rt△OAB中进行,AB:OB:OA6、=弧长、扇形面积公式(1)弧长公式:(2)扇形面积公式:侧面展开图(1)圆柱侧面展开图=(2)圆锥侧面展开图=
3、它所对的圆心的角的一半即:∵∠AOB和∠ACB是所对的圆心角和圆周角∴∠AOB=2∠ACB圆周角定理的推论:推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧是等弧即:在⊙O中,∵∠C、∠D都是所对的圆周角∴∠C=∠D推论2:半圆或直径所对的圆周角是直角;圆周角是直角所对的弧是半圆,所对的弦是直径即:在⊙O中,∵AB是直径或∵∠C=90°∴∠C=90°∴AB是直径推论3:三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形即:在△ABC中,∵OC=OA=OB∴△ABC是直角三角形或∠C=90°注:此推论实是
4、初二年级几何中矩形的推论:在直角三角形中斜边上的中线等于斜边的一半的逆定理。圆内接四边形圆的内接四边形定理:圆的内接四边形的对角互补,外角等于它的内对角。即:在⊙O中,∵四边形ABCD是内接四边形∴∠C+∠BAD=180°B+∠D=180°∠DAE=∠C切线的性质与判定定理(1)判定定理:过半径外端且垂直于半径的直线是切线两个条件:过半径外端且垂直半径,二者缺一不可即:∵MN⊥OA且MN过半径OA外端∴MN是⊙O的切线(2)性质定理:切线垂直于过切点的半径(如上图)推论1:过圆心垂直于切线的直线必过切点推论2:过切点垂直于切线的直线必
5、过圆心以上三个定理及推论也称二推一定理:即:过圆心过切点垂直切线中知道其中两个条件推出最后一个条件∵MN是切线∴MN⊥OA切线长定理切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,这点和圆心的连线平分两条切线的夹角。即:∵PA、PB是的两条切线∴PA=PBPO平分∠BPA圆内正多边形的计算(1)正三角形在⊙O中△ABC是正三角形,有关计算在Rt△BOD中进行,OD:BD:OB=(2)正四边形同理,四边形的有关计算在Rt△OAE中进行,OE :AE:OA=(3)正六边形同理,六边形的有关计算在Rt△OAB中进行,AB:OB:OA
6、=弧长、扇形面积公式(1)弧长公式:(2)扇形面积公式:侧面展开图(1)圆柱侧面展开图=(2)圆锥侧面展开图=
此文档下载收益归作者所有