欢迎来到天天文库
浏览记录
ID:49533956
大小:466.00 KB
页数:15页
时间:2020-03-02
《正弦定理、余弦定理应用举例.doc》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、§4.7 正弦定理、余弦定理应用举例1.解斜三角形的常见类型及解法在三角形的6个元素中要已知三个(除三角外)才能求解,常见类型及其解法如表所示.已知条件应用定理一般解法一边和两角(如a,B,C)正弦定理由A+B+C=180°,求角A;由正弦定理求出b与c.在有解时只有一解两边和夹角(如a,b,C)余弦定理正弦定理由余弦定理求第三边c;由正弦定理求出小边所对的角;再由A+B+C=180°求出另一角.在有解时只有一解三边(a,b,c)余弦定理由余弦定理求出角A、B;再利用A+B+C=180°,求出角C.在有解时只有
2、一解两边和其中一边的对角(如a,b,A)正弦定理余弦定理由正弦定理求出角B;由A+B+C=180°,求出角C;再利用正弦定理或余弦定理求c.可有两解,一解或无解2.用正弦定理和余弦定理解三角形的常见题型测量距离问题、高度问题、角度问题、计算面积问题、航海问题、物理问题等.3.实际问题中的常用角(1)仰角和俯角与目标线在同一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平视线上方叫仰角,目标视线在水平视线下方叫俯角(如图①).(2)方向角:相对于某正方向的水平角,如南偏东30°,北偏西45°等;(3)方位角指
3、从正北方向顺时针转到目标方向线的水平角,如B点的方位角为α(如图②).(4)坡度:坡面与水平面所成的二面角的度数.1.在某次测量中,在A处测得同一半平面方向的B点的仰角是60°,C点的俯角是70°,则∠BAC=________.2.(2011·上海)在相距2千米的A,B两点处测量目标C,若∠CAB=75°,∠CBA=60°,则A,C两点之间的距离是__________千米.3.江岸边有一炮台高30m,江中有两条船,船与炮台底部在同一水面上,由炮台顶部测得俯角分别为45°和60°,而且两条船与炮台底部连线成30°
4、角,则两条船相距________m.4.如图,某登山队在山脚A处测得山顶B的仰角为45°,沿倾斜角为30°的斜坡前进1000m后到达D处,又测得山顶的仰角为60°,则山的高度BC为________m.5.两座灯塔A和B与海岸观察站C的距离相等,灯塔A在观察站北偏东40°,灯塔B在观察站南偏东60°,则灯塔A在灯塔B的( ) A.北偏东10°B.北偏西10°C.南偏东10°D.南偏西10°题型一 测量距离问题例1 (2010·陕西)如图,A,B是海面上位于东西方向相距5(3+)海里的两个观测点,现位于A点北偏东
5、45°,B点北偏西60°的D点有一艘轮船发出求救信号,位于B点南偏西60°且与B点相距20海里的C点的救援船立即前往营救,其航行速度为30海里/小时,该救援船到达D点需要多长时间?探究提高 这类实际应用题,实质就是解三角形问题,一般都离不开正弦定理和余弦定理,在解题中,首先要正确地画出符合题意的示意图,然后将问题转化为三角形问题去求解.注意:①基线的选取要恰当准确;②选取的三角形及正、余弦定理要恰当.要测量对岸A、B两点之间的距离,选取相距km的C、D两点,并测得∠ACB=75°,∠BCD=45°,∠ADC=3
6、0°,∠ADB=45°,求A、B之间的距离.题型二 测量高度问题例2 某人在塔的正东沿着南偏西60°的方向前进40米后,望见塔在东北方向,若沿途测得塔顶的最大仰角为30°,求塔高.探究提高 在测量高度时,要正确理解仰角、俯角的概念,画出准确的示意图,恰当地选取相关的三角形和正、余弦定理逐步进行求解.注意综合应用方程和平面几何、立体几何等知识.如图,某人在塔的正东方向上的C处在与塔垂直的水平面内沿南偏西60°的方向以每小时6千米的速度步行了1分钟以后,在点D处望见塔的底端B在东北方向上,已知沿途塔的仰角∠AEB=
7、α,α的最大值为60°.(1)求该人沿南偏西60°的方向走到仰角α最大时,走了几分钟;(2)求塔的高AB.题型三 几何中的正、余弦定理应用问题例3 如图所示,在梯形ABCD中,AD∥BC,AB=5,AC=9,∠BCA=30°,∠ADB=45°,求BD的长.探究提高 要利用正、余弦定理解决问题,需将多边形分割成若干个三角形.在分割时,要注意有利于应用正、余弦定理.如图所示,△ACD是等边三角形,△ABC是等腰直角三角形,∠ACB=90°,BD交AC于E,AB=2.(1)求cos∠CBE的值;(2)求AE.
8、 7.运用正、余弦定理解决实际应用问题试题:(14分)如图,在海岸A处发现北偏东45°方向,距A处(-1)海里的B处有一艘走私船.在A处北偏西75°方向,距A处2海里的C处的我方缉私船奉命以10海里/小时的速度追截走私船,此时走私船正以10海里/小时的速度,以B处向北偏东30°方向逃窜.问:缉私船沿什么方向行驶才能最快截获走私船?并求出所需时间.审题视角 (1)分清已知条件和未知
此文档下载收益归作者所有