晶体的倒格子和布里渊区.ppt

晶体的倒格子和布里渊区.ppt

ID:49522078

大小:1.85 MB

页数:32页

时间:2020-02-07

晶体的倒格子和布里渊区.ppt_第1页
晶体的倒格子和布里渊区.ppt_第2页
晶体的倒格子和布里渊区.ppt_第3页
晶体的倒格子和布里渊区.ppt_第4页
晶体的倒格子和布里渊区.ppt_第5页
资源描述:

《晶体的倒格子和布里渊区.ppt》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、一.定义二.倒易点阵和晶体点阵的关系三.倒易点阵的物理意义四.倒易点阵实例五.布里渊区参考:黄昆书1.3节;p175-179;Kittel8版2.3节1.7晶体的倒格子和布里渊区(Reciprocallattice;Brillouinzones)晶格周期函数傅里叶级数展开当一个点阵具有位移矢量时,考虑到周期性特点,一个物理量在r点的数值也应该具有周期性:两边做Fourier展开,有:显然:即:既然是正点阵的格矢,符合该关系的就是倒易点阵的格矢。所以,同一物理量在正点阵中的表述和在倒易点阵中的表述之间服从Fourier变换关系。一.定义:假设是一个

2、晶体点阵的基矢,该点阵的格矢为:原胞体积是:现在定义3个新的基矢构成一个新点阵:位移矢量就构成了上面点阵的倒易点阵,上面变换公式中出现的因子,对于晶体学家来说并没有多大用处,但对于固体物理研究却带来了极大的方便。倒易点阵的概念是Ewald1921年在处理晶体X射线衍射问题时首先引入的,对我们理解衍射问题极有帮助,更是整个固体物理的核心概念。(h1,h3,h3是整数。)二.倒易点阵和晶体点阵之间的关系:倒易点阵是从晶体点阵(以后简称正点阵)中定义出的,可以方便地证明它和正点阵之间有如下关系:2.两个点阵的格矢之积是的整数倍:3.两个点阵原胞体积之间

3、的关系是:4.正点阵晶面族与倒易点阵格矢相互垂直,1.两个点阵的基矢之间:且有:2.证明:1.证明:根据矢量运算规则,从倒格矢定义即可说明。3.证明:先证明倒格矢与正格子的晶面系正交。如图所示,晶面系中最靠近原点的晶面(ABC)在正格子基矢的截距分别为:于是:同理而且都在(ABC)面上,所以与晶面系正交。晶面系的面间距就是原点到ABC面的距离,由于可以证明:由此我们得出结论:倒易点阵的一个基矢是和正点阵晶格中的一族晶面相对应的,它的方向是该族晶面的法线方向,而它的大小是该族晶面面间距倒数的2π倍。又因为倒易点阵基矢对应一个阵点,因而可以说:晶体点

4、阵中的晶面取向和晶面面间距这2个参量在倒易点阵里只用一个点阵矢量(或说阵点)就能综合地表达出来。(2)晶面族(h1h2h3)的面间距d为证明:由前面的证明可知,原点到面ABC的距离即为所求面间距(设为d)。ABCOa1a2a3a1/h1a2/h2a3/h3Ghd上述第3点的图示。4.正点阵和倒易点阵是互易的:由正点阵给出倒易点阵现假定为正点阵,则其倒易点阵根据定义为:利用三重矢积公式:可以得到:又因为:所以:同样可以证明:实际上,晶体结构本身就是一个具有晶格周期性的物理量,所以也可以说:倒易点阵是晶体点阵的Fourier变换,晶体点阵则是倒易点阵

5、的Fourier逆变换。因此,正格子的量纲是长度L,称作坐标空间,倒格子的量钢是长度的倒数L-1,称作波矢空间。例如:正点阵取cm,倒易点阵是cm-1,下一节我们将看到:晶体的显微图像是真实晶体结构在坐标空间的映像。晶体的衍射图像则是晶体倒易点阵的映像。倒易点阵是在晶体点阵(布拉菲格子)的基础上定义的,所以每一种晶体结构,都有2个点阵与其相联系,一个是晶体点阵,反映了构成原子在三维空间做周期排列的图像;另一个是倒易点阵,反映了周期结构物理性质的基本特征。三.倒易点阵(Reciprocallattice)的物理意义:倒格子基矢是从点阵基矢引出的,它

6、们之间的联系需要我们通过具体实例来理解:根据右面定义,四.倒易点阵实例:显然:左图是一个二维斜方点阵和它的倒易点阵,简立方点阵:倒易点阵仍是简立方点阵:六角点阵的倒易点阵:见Ashcroftp88六角点阵:c轴方向不变,a轴在垂直于c轴的平面上旋转30度。所以倒格子也是布拉菲格子。正格子空间六方结构,在倒格子空间亦为六方结构。不过其基矢尺寸关系发生变化,基矢方向也转了一个角度。正格子空间中长的基矢a3对应于倒格子空间短的基矢b3,反之亦然。推广,正格子空间长的线条对应于倒格子空间短的线条。三维例子:正点阵为简单点阵,倒易点阵也是简单点阵。正点阵为

7、有心点阵时,倒易点阵也是有心点阵,但有心类型可能不同,例如:体心立方点阵的倒格子为面心立方点阵。而面心立方点阵的倒格子为体心立方点阵。第一布里渊区的确定:取法和正点阵中Wigner-Seitz原胞取法相同。它是倒易点阵的原胞。五.布里渊区:LéonBrilliouin(1889-1969)布里渊区定义:在倒易点阵中,以某一格点为坐标原点,做所有倒格矢的垂直平分面,倒易空间被这些平面分成许多包围原点的多面体区域,这些区域称作布里渊区,其中最靠近原点的平面所围成的区域称作第一布里渊区,第一布里渊区界面与次远垂直平分面所围成的区域称作第二布里渊区,依次

8、类推得到二维正方格子的布里渊区图见下页。由于布里渊区界面是某倒格矢的垂直平分面,如果用表示从原点出发、端点落在布里渊区界面上的倒易空间矢

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。