欢迎来到天天文库
浏览记录
ID:49477438
大小:281.50 KB
页数:12页
时间:2020-02-07
《勾股定理(3).ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、八年级下册17.1勾股定理(3)编辑:安利利问题1在八年级上册中,我们曾经通过画图得到结论:斜边和一条直角边分别相等的两个直角三角形全等.学习了勾股定理后,你能证明这一结论吗?证明“HL”证明“HL”′′′′′′已知:如图,在Rt△ABC和Rt△ABC中,∠C=∠C=90°,AB=AB,AC=AC.求证:△ABC≌△ABC.′′′′′′′′′′′证明:在Rt△ABC和Rt△ABC中,∠C=∠C′=90°,根据勾股定理,得′′′ABCABC′′′证明“HL”ABCABC′′′′′′∴△ABC≌△ABC(SSS).′′′′′′证明:∵AB=AB,AC=AC,∴BC
2、=BC.已知:如图,在Rt△ABC和Rt△ABC中,∠C=∠C=90°,AB=AB,AC=AC.求证:△ABC≌△ABC.′′′′′′′′′′′画图提高问题2我们知道数轴上的点有的表示有理数,有的表示无理数,你能在数轴上画出表示的点吗?画图提高练习1教科书第27页练习1.“数学海螺”类比迁移应用提高例 如图,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D为AB边上一点.求证:AD2+DB2=DE2.证明:∵∠ACB=∠ECD,∴∠ACD+∠BCD=∠ACD+∠ACE,∴∠BCD=∠ACE.又BC=AC,DC=EC,∴△ACE≌△BCD.A
3、BCDE应用提高ABCDE证明:∴∠B=∠CAE=45°,∠DAE=∠CAE+∠BAC=45°+45°=90°.∴AD2+AE2=DE2.∵AE=DB,∴AD2+DB2=DE2.例 如图,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D为AB边上一点.求证:AD2+DB2=DE2.应用提高练习2教科书第27页练习2.(1)勾股定理有哪些方面的应用,本节课学习了勾股定理哪几方面的应用?(2)你能说说勾股定理求线段长的基本思路吗?(3)本节课体现出哪些数学思想方法?课堂小结作业:教科书第27页第1,2题.课后作业
此文档下载收益归作者所有