2014年高考导数压轴题汇编解析.doc

2014年高考导数压轴题汇编解析.doc

ID:49448083

大小:484.62 KB

页数:17页

时间:2020-03-01

上传者:无敌小子
2014年高考导数压轴题汇编解析.doc_第1页
2014年高考导数压轴题汇编解析.doc_第2页
2014年高考导数压轴题汇编解析.doc_第3页
2014年高考导数压轴题汇编解析.doc_第4页
2014年高考导数压轴题汇编解析.doc_第5页
资源描述:

《2014年高考导数压轴题汇编解析.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

2014年高考导数压轴题汇编171.[2014·四川卷]已知函数f(x)=ex-ax2-bx-1,其中a,b∈R,e=2.71828…为自然对数的底数.(1)设g(x)是函数f(x)的导函数,求函数g(x)在区间[0,1]上的最小值;(2)若f(1)=0,函数f(x)在区间(0,1)内有零点,求a的取值范围.21.解:(1)由f(x)=ex-ax2-bx-1,得g(x)=f′(x)=ex-2ax-b.所以g′(x)=ex-2a.当x∈[0,1]时,g′(x)∈[1-2a,e-2a].当a≤时,g′(x)≥0,所以g(x)在[0,1]上单调递增,因此g(x)在[0,1]上的最小值是g(0)=1-b;当a≥时,g′(x)≤0,所以g(x)在[0,1]上单调递减,因此g(x)在[0,1]上的最小值是g(1)=e-2a-b;当0,g(1)=e-2a-b>0.由f(1)=0得a+b=e-1<2,则g(0)=a-e+2>0,g(1)=1-a>0,解得e-20,g(1)=1-a>0.故此时g(x)在(0,ln(2a))和(ln(2a),1)内各只有一个零点x1和x2.由此可知f(x)在[0,x1]上单调递增,在(x1,x2)上单调递减,在[x2,1]上单调递增.所以f(x1)>f(0)=0,f(x2)1+2x,原不等式成立.②假设p=k(k≥2,k∈N*)时,不等式(1+x)k>1+kx成立.当p=k+1时,(1+x)k+1=(1+x)(1+x)k>(1+x)(1+kx)=1+(k+1)x+kx2>1+(k+1)x.所以当p=k+1时,原不等式也成立.综合①②可得,当x>-1,x≠0时,对一切整数p>1,不等式(1+x)p>1+px均成立.(2)方法一:先用数学归纳法证明an>c.①当n=1时,由题设知a1>c成立.②假设n=k(k≥1,k∈N*)时,不等式ak>c成立.由an+1=an+a易知an>0,n∈N*.17 当n=k+1时,=+a=1+.由ak>c>0得-1<-<<0.由(1)中的结论得=>1+p·=.因此a>c,即ak+1>c,所以当n=k+1时,不等式an>c也成立.综合①②可得,对一切正整数n,不等式an>c均成立.再由=1+可得<1,即an+1an+1>c,n∈N*.方法二:设f(x)=x+x1-p,x≥c,则xp≥c,所以f′(x)=+(1-p)x-p=>0.由此可得,f(x)在[c,+∞)上单调递增,因而,当x>c时,f(x)>f(c)=c.①当n=1时,由a1>c>0,即a>c可知a2=a1+a=a1c,从而可得a1>a2>c,故当n=1时,不等式an>an+1>c成立.②假设n=k(k≥1,k∈N*)时,不等式ak>ak+1>c成立,则当n=k+1时,f(ak)>f(ak+1)>f(c),即有ak+1>ak+2>c,所以当n=k+1时,原不等式也成立.综合①②可得,对一切正整数n,不等式an>an+1>c均成立.3.[2014·福建卷]已知函数f(x)=ex-ax(a为常数)的图像与y轴交于点A,曲线y=f(x)在点A处的切线斜率为-1.(1)求a的值及函数f(x)的极值;(2)证明:当x>0时,x2ln2时,f′(x)>0,f(x)单调递增.所以当x=ln2时,f(x)取得极小值,且极小值为f(ln2)=eln2-2ln2=2-ln4,f(x)无极大值.(2)证明:令g(x)=ex-x2,则g′(x)=ex-2x.由(1)得,g′(x)=f(x)≥f(ln2)=2-ln4>0,故g(x)在R上单调递增,又g(0)=1>0,所以当x>0时,g(x)>g(0)>0,即x20时,x20时,x21,要使不等式x2kx2成立.而要使ex>kx2成立,则只要x>ln(kx2),只要x>2lnx+lnk成立.令h(x)=x-2lnx-lnk,则h′(x)=1-=.所以当x>2时,h′(x)>0,h(x)在(2,+∞)内单调递增.取x0=16k>16,所以h(x)在(x0,+∞)内单调递增.又h(x0)=16k-2ln(16k)-lnk=8(k-ln2)+3(k-lnk)+5k,易知k>lnk,k>ln2,5k>0,所以h(x0)>0.即存在x0=,当x∈(x0,+∞)时,恒有x20时,ex>x2,所以ex=e·e>·,17 当x>x0时,ex>>=x2,因此,对任意给定的正数c,总存在x0,当x∈(x0,+∞)时,恒有x20时,x2x0时,有x21时,对x∈(0,a-1]有φ′(x)<0,∴φ(x)在(0,a-1]上单调递减,∴φ(a-1)<φ(0)=0.即a>1时,存在x>0,使φ(x)<0,故知ln(1+x)≥不恒成立.综上可知,a的取值范围是(-∞,1].(3)由题设知g(1)+g(2)+…+g(n)=++…+,比较结果为g(1)+g(2)+…+g(n)>n-ln(n+1).证明如下:方法一:上述不等式等价于++…+,x>0.令x=,n∈N+,则,x>0.令x=,n∈N+,则ln>.故有ln2-ln1>,ln3-ln2>,……ln(n+1)-lnn>,上述各式相加可得ln(n+1)>++…+,结论得证.方法三:如图,dx是由曲线y=,x=n及x轴所围成的曲边梯形的面积,而++…+是图中所示各矩形的面积和,∴++…+>dx=dx=n-ln(n+1),结论得证.5.[2014·湖北卷]π为圆周率,e=2.71828…为自然对数的底数.(1)求函数f(x)=的单调区间;(2)求e3,3e,eπ,πe,,3π,π3这6个数中的最大数与最小数;(3)将e3,3e,eπ,πe,3π,π3这6个数按从小到大的顺序排列,并证明你的结论.22.解:(1)函数f(x)的定义域为(0,+∞).因为f(x)=,所以f′(x)=.当f′(x)>0,即0e时,函数f(x)单调递减.故函数f(x)的单调递增区间为(0,e),单调递减区间为(e,+∞).(2)因为e<3<π,所以eln3π3;由<,得ln3e2-.①由①得,elnπ>e>2.7×>2.7×(2-0.88)=3.024>3,即elnπ>3,亦即lnπe>lne3,所以e3<πe.又由①得,3lnπ>6->6-e>π,即3lnπ>π,所以eπ<π3.综上可得,3e0,此时,f(x)在区间(0,+∞)上单调递增.当00.故f(x)在区间(0,x1)上单调递减,在区间(x1,+∞)上单调递增.综上所述,当a≥1时,f(x)在区间(0,+∞)上单调递增;当0<a<1时,f(x)在区间上单调递减,在区间上单调递增.(2)由(*)式知,当a≥1时,f′(x)≥0,此时f(x)不存在极值点,因而要使得f(x)有两个极值点,必有0-且x≠-2,所以-2>-,-2≠-2,解得a≠.此时,由(*)式易知,x1,x2分别是f(x)的极小值点和极大值点.而f(x1)+f(x2)=ln(1+ax1)-+ln(1+ax2)-=ln[1+a(x1+x2)+a2x1x2]-=ln(2a-1)2-=ln(2a-1)2+-2.令2a-1=x.由0g(1)=0.故当0.综上所述,满足条件的a的取值范围为.7.[2014·全国大纲卷]函数f(x)=ln(x+1)-(a>1).(1)讨论f(x)的单调性;(2)设a1=1,an+1=ln(an+1),证明:0,所以f(x)在(-1,a2-2a)是增函数;若x∈(a2-2a,0),则f′(x)<0,所以f(x)在(a2-2a,0)是减函数;若x∈(0,+∞),则f′(x)>0,所以f(x)在(0,+∞)是增函数.(ii)当a=2时,若f′(x)≥0,f′(x)=0成立当且仅当x=0,所以f(x)在(-1,+∞)是增函数.(iii)当a>2时,若x∈(-1,0),则f′(x)>0,所以f(x)在(-1,0)是增函数;若x∈(0,a2-2a),则f′(x)<0,所以f(x)在(0,a2-2a)是减函数;若x∈(a2-2a,+∞),则f′(x)>0,所以f(x)在(a2-2a,+∞)是增函数.(2)由(1)知,当a=2时,f(x)在(-1,+∞)是增函数.当x∈(0,+∞)时,f(x)>f(0)=0,即ln(x+1)>(x>0).又由(1)知,当a=3时,f(x)在[0,3)是减函数.当x∈(0,3)时,f(x)ln>=,ak+1=ln(ak+1)≤ln<=,即当n=k+1时,有1.21.解:(1)函数f(x)的定义域为(0,+∞),f′(x)=aexlnx+ex-ex-1+ex-1.由题意可得f(1)=2,f′(1)=e,故a=1,b=2.(2)证明:由(1)知,f(x)=exlnx+ex-1,从而f(x)>1等价于xlnx>xe-x-.设函数g(x)=xlnx,则g′(x)=1+lnx,所以当x∈时,g′(x)<0;当x∈时,g′(x)>0.故g(x)在上单调递减,在上单调递增,从而g(x)在(0,+∞)上的最小值为g=-.17 设函数h(x)=xe-x-,则h′(x)=e-x(1-x).所以当x∈(0,1)时,h′(x)>0;当x∈(1,+∞)时,h′(x)<0.故h(x)在(0,1)上单调递增,在(1,+∞)上单调递减,从而h(x)在(0,+∞)上的最大值为h(1)=-.因为gmin(x)=g=h(1)=hmax(x),所以当x>0时,g(x)>h(x),即f(x)>1.9.[2014·新课标全国卷Ⅱ]已知函数f(x)=ex-e-x-2x.(1)讨论f(x)的单调性;(2)设g(x)=f(2x)-4bf(x),当x>0时,g(x)>0,求b的最大值;(3)已知1.4142<<1.4143,估计ln2的近似值(精确到0.001).21.解:(1)f′(x)=ex+e-x-2≥0,当且仅当x=0时,等号成立,所以f(x)在(-∞,+∞)上单调递增.(2)g(x)=f(2x)-4bf(x)=e2x-e-2x-4b(ex-e-x)+(8b-4)x,g′(x)=2[e2x+e-2x-2b(ex+e-x)+(4b-2)]=2(ex+e-x-2)(ex+e-x-2b+2).(i)当b≤2时,g′(x)≥0,等号仅当x=0时成立,所以g(x)在(-∞,+∞)上单调递增.而g(0)=0,所以对任意x>0,g(x)>0.(ii)当b>2时,若x满足20,ln2>>0.6928;当b=+1时,ln(b-1+)=ln,g(ln)=--2+(3+2)ln2<0,ln2<<0.6934.所以ln2的近似值为0.693.10.[2014·山东卷]设函数f(x)=-k(k为常数,e=2.71828…是自然对数的底数).17 (1)当k≤0时,求函数f(x)的单调区间;(2)若函数f(x)在(0,2)内存在两个极值点,求k的取值范围.20.解:(1)函数y=f(x)的定义域为(0,+∞),f′(x)=-k=-=.由k≤0可得ex-kx>0,所以当x∈(0,2)时,f′(x)<0,函数y=f(x)单调递减;x∈(2,+∞)时,f′(x)>0,函数y=f(x)单调递增.所以f(x)的单调递减区间为(0,2),单调递增区间为(2,+∞).(2)由(1)知,当k≤0时,函数f(x)在(0,2)内单调递减,故f(x)在(0,2)内不存在极值点;当k>0时,设函数g(x)=ex-kx,x∈(0,+∞).因为g′(x)=ex-k=ex-elnk,当00,y=g(x)单调递增,故f(x)在(0,2)内不存在两个极值点.当k>1时,得x∈(0,lnk)时,g′(x)<0,函数y=g(x)单调递减;x∈(lnk,+∞)时,g′(x)>0,函数y=g(x)单调递增.所以函数y=g(x)的最小值为g(lnk)=k(1-lnk).函数f(x)在(0,2)内存在两个极值点.当且仅当解得e0在R上恒成立,可得f(x)在R上单调递增,不合题意.(ii)a>0时,由f′(x)=0,得x=-lna.当x变化时,f′(x),f(x)的变化情况如下表:x(-∞,-lna)-lna(-lna,+∞)f′(x)+0-f(x)-lna-1这时,f(x)的单调递增区间是(-∞,-lna);单调递减区间是(-lna,+∞).于是,“函数y=f(x)有两个零点”等价于如下条件同时成立:①f(-lna)>0;②存在s1∈(-∞,-lna),满足f(s1)<0;③存在s2∈(-lna,+∞),满足f(s2)<0.由f(-lna)>0,即-lna-1>0,解得00.由已知,x1,x2满足a=g(x1),a=g(x2).由a∈(0,e-1)及g(x)的单调性,可得x1∈(0,1),x2∈(1,+∞).对于任意的a1,a2∈(0,e-1),设a1>a2,g(ξ1)=g(ξ2)=a1,其中0<ξ1<1<ξ2;g(η1)=g(η2)=a2,其中0<η1<1<η2.因为g(x)在(0,1)上单调递增,所以由a1>a2,即g(ξ1)>g(η1),可得ξ1>η1.类似可得ξ2<η2.又由ξ1,η1>0,得<<,所以随着a的减小而增大.(3)证明:由x1=aex1,x2=aex2,可得lnx1=lna+x1,lnx2=lna+x2.故x2-x1=lnx2-lnx1=ln.设=t,则t>1,且解得x1=,x2=,所以x1+x2=.①令h(x)=,x∈(1,+∞),则h′(x)=.17 令u(x)=-2lnx+x-,得u′(x)=.当x∈(1,+∞)时,u′(x)>0.因此,u(x)在(1,+∞)上单调递增,故对于任意的x∈(1,+∞),u(x)>u(1)=0,由此可得h′(x)>0,故h(x)在(1,+∞)上单调递增.因此,由①可得x1+x2随着t的增大而增大.而由(2),t随着a的减小而增大,所以x1+x2随着a的减小而增大.12.[2014·浙江卷]已知函数f(x)=x3+3|x-a|(a∈R).(1)若f(x)在[-1,1]上的最大值和最小值分别记为M(a),m(a),求M(a)-m(a);(2)设b∈R,若[f(x)+b]2≤4对x∈[-1,1]恒成立,求3a+b的取值范围.22.解:(1)因为f(x)=所以f′(x)=由于-1≤x≤1,(i)当a≤-1时,有x≥a,故f(x)=x3+3x-3a,此时f(x)在(-1,1)上是增函数,因此,M(a)=f(1)=4-3a,m(a)=f(-1)=-4-3a,故M(a)-m(a)=(4-3a)-(-4-3a)=8.(ii)当-10,t(a)在上是增函数,故t(a)>t(0)=-2,因此-2≤3a+b≤0.(iii)当0,故f(x)在R上为增函数.(3)由(1)知f′(x)=2e2x+2e-2x-c,而2e2x+2e-2x≥2=4,当且仅当x=0时等号成立.下面分三种情况进行讨论:当c<4时,对任意x∈R,f′(x)=2e2x+2e-2x-c>0,此时f(x)无极值.当c=4时,对任意x≠0,f′(x)=2e2x+2e-2x-4>0,此时f(x)无极值.当c>4时,令e2x=t,注意到方程2t+-c=0有两根t1,2=>0,则f′(x)=0有两个根x1=lnt1,x2=lnt2.17 当x1x2时,f′(x)>0.从而f(x)在x=x2处取得极小值.综上,若f(x)有极值,则c的取值范围为(4,+∞).17

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
关闭