欢迎来到天天文库
浏览记录
ID:49356920
大小:627.00 KB
页数:19页
时间:2020-02-03
《chapt5(弯曲应力)材料力学ppt.ppt》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、第五章弯曲应力第一节引言第二节纯弯曲时梁横截面上的正应力第三节梁的正应力强度条件第四节梁横截面上的切应力、梁的切应力强度条件第五节梁的合理设计梁弯曲时横截面上的正应力与切应力,分别称为弯曲正应力与弯曲切应力。第一节引言弯曲应力MFSFSMstI、试验与假设第二节纯弯曲时梁横截面上的正应力1122cabd1122cabdMMMM假设①平截面假设②单向受力假设中性层:构件内部既不伸长也不收缩的纤维层。中性轴:横截面与中性层的交线。弯曲应力MMII、弯曲正应力一般公式1.几何条件弯曲应力m2n2sysLyO1O2ra2'dxn
2、2m2n1m1O曲率中心n2dxn1m1m2ya1ya2e1O1O2e2x中性层z中性轴y对称轴oa2a1ydqdldqxe2e12.物理条件(虎克定律)弯曲应力3.力学条件dAyz(中性轴)xzyOsdAM中性轴通过截面形心②梁的上下边缘处,弯曲正应力取得最大值,分别为:—抗弯截面模量。4.纯弯曲梁横截面上的应力(弯曲正应力):①距中性层y处的应力5.横截面上正应力的画法:MsminsmaxMsminsmax弯曲应力①线弹性范围—正应力小于比例极限sp;②精确适用于纯弯曲梁;③对于横力弯曲的细长梁(跨度与截面高度比L/
3、h>5),上述公式的误差不大,但公式中的M应为所研究截面上的弯矩,即为截面位置的函数。6.公式适用范围:1.矩形截面III、三种典型截面对中性轴的惯性矩2.实心圆截面3.截面为外径D、内径d(a=d/D)的空心圆:例5-1如图所示悬臂梁,自由端承受集中载荷F=15kN作用。试计算截面B--B的最大弯曲拉应力与最大弯曲压应力。解:1.确定截面形心位置选参考坐标系z’oy如图示,将截面分解为I和II两部分,形心C的纵坐标为:2.计算截面惯性矩弯曲应力2012020120单位:mmIII3计算最大弯曲正应力截面B—B的弯矩为:
4、在截面B的上、下边缘,分别作用有最大拉应力和最大压应力,其值分别为:弯曲应力①拉压强度相等材料:②拉压强度不等材料:根据强度条件可进行:第三节梁的正应力强度条件弯曲应力1、强度校核:2、截面设计:3、确定梁的许可荷载:弯曲应力例5-2已知16号工字钢Wz=141cm3,l=1.5m,a=1m,[s]=160MPa,E=210GPa,在梁的下边缘C点沿轴向贴一应变片,测得C点轴向线应变,求F并校核梁正应力强度。CNO.16FAB第四节梁横截面上的切应力切应力强度条件一、矩形梁横截面上的切应力1、公式推导:弯曲应力n1m'n
5、'2m1'ze11'1'11ye2e1x2112dxBAyyxdxxM+dMMFSFSss+dst'mnmm'dxtyt'A例5-3求图示矩形截面梁横截面上的切应力分布。OyzbhtmaxyOt代入切应力公式:解:将切应力t呈图示的抛物线分布,在最边缘处为零在中性轴上最大,其值为:—平均切应力弯曲应力xdx二、工字形截面梁上的切应力腹板上任一点处的可直接由矩形梁的公式得出:式中:d为腹板厚度三、薄壁环形截面梁上的切应力假设:1、切应力沿壁厚无变化;2、切应力方向与圆周相切式中:A为圆环截面面积四、圆截面梁上的切应力式中:
6、A为圆截面面积对于等直杆,最大切应力的统一表达式为:弯曲应力五、梁的切应力强度条件与正应力强度条件相似,也可以进行三方面的工作:1、强度校核,2、截面设计,3、确定梁的许可荷载但通常用于校核。特殊的:1、梁的最大弯矩小,而最大剪力大;2、焊接组合截面,腹板厚度与梁高之比小于型钢的相应比值;3、木梁因其顺纹方向的抗剪强度差。需进行切应力强度计算。弯曲应力例5-4T形梁尺寸及所受荷载如图所示,已知[s]y=100MPa,[s]L=50MPa,[t]=40MPa,yc=17.5mm,Iz=18.2×104mm4。求:1)C左侧
7、截面E点的正应力、切应力;2)校核梁的正应力、切应力强度条件。CAB40401010yc1FS0.250.75(kN)_+M(kN.m)0.250.5+_弯曲应力该梁满足强度要求一、合理配置梁的荷载和支座1、将荷载分散2、合理设置支座位置第五节梁的合理设计Pl/2ABl/2CPl/4ABl/4l/4l/4D+Pl/4M图+Pl/8M图Pl/8qlABql2/8M图+q3l/5ABl/5l/5M图+--ql2/40ql2/50ql2/50弯曲应力二、合理选取截面形状从弯曲强度考虑,比较合理的截面形状,是使用较小的截面面积,
8、却能获得较大抗弯截面系数的截面。在一般截面中,抗弯截面系数与截面高度的平方成正比。因此,当截面面积一定时,宜将较多材料放置在远离中性轴的部位。面积相同时:工字形优于矩形,矩形优于正方形;环形优于圆形。同时应尽量使拉、压应力同时达到最大值。弯曲应力smaxsmin三、合理设计梁的外形(等强度梁)梁内不同横截面的弯矩不同
此文档下载收益归作者所有