六、 异方差性.ppt

六、 异方差性.ppt

ID:49297443

大小:1.36 MB

页数:73页

时间:2020-02-02

六、 异方差性.ppt_第1页
六、 异方差性.ppt_第2页
六、 异方差性.ppt_第3页
六、 异方差性.ppt_第4页
六、 异方差性.ppt_第5页
资源描述:

《六、 异方差性.ppt》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、第六章异方差性计量经济学1引子:更为接近真实的结论是什么?根据四川省2000年21个地市州医疗机构数与人口数资料,分析医疗机构与人口数量的关系,建立卫生医疗机构数与人口数的回归模型。对模型估计的结果如下:式中表示卫生医疗机构数(个),表示人口数量(万人)。2模型显示的结果和问题●人口数量对应参数的标准误差较小;●t统计量远大于临界值,可决系数和修正的可决系数结果较好,F检验结果明显显著;表明该模型的估计效果不错,可以认为人口数量每增加1万人,平均说来医疗机构将增加5.3735人。然而,这里得出的结论可

2、能是不可靠的,平均说来每增加1万人口可能并不需要增加这样多的医疗机构,所得结论并不符合真实情况。有什么充分的理由说明这一回归结果不可靠呢?更为接近真实的结论又是什么呢?3本章讨论四个问题:●异方差的实质和产生的原因●异方差产生的后果●异方差的检测方法●异方差的补救第六章异方差性4第一节异方差性的概念本节基本内容:●异方差性的实质●异方差产生的原因5一、异方差性的实质同方差的含义同方差性:对所有的有:(6.1)因为方差是度量被解释变量的观测值围绕回归线(6.2)的分散程度,因此同方差性指的是所有观测值的

3、分散程度相同。6设模型为如果对于模型中随机误差项有:则称具有异方差性。进一步,把异方差看成是由于某个解释变量的变化而引起的,则异方差性的含义(6.4)(6.3)7图形表示8(一)模型中省略了某些重要的解释变量假设正确的计量模型是:假如略去,而采用当被略去的与有呈同方向或反方向变化的趋势时,随的有规律变化会体现在(6.5)式的中。(6.5)二、产生异方差的原因9(二)模型的设定误差模型的设定主要包括变量的选择和模型数学形式的确定。模型中略去了重要解释变量常常导致异方差,实际就是模型设定问题。除此而外,模

4、型的函数形式不正确,如把变量间本来为非线性的关系设定为线性,也可能导致异方差。(三)数据的测量误差样本数据的观测误差有可能随研究范围的扩大而增加,或随时间的推移逐步积累,也可能随着观测技术的提高而逐步减小。10(四)截面数据中总体各单位的差异通常认为,截面数据较时间序列数据更容易产生异方差。这是因为同一时点不同对象的差异,一般说来会大于同一对象不同时间的差异。不过,在时间序列数据发生较大变化的情况下,也可能出现比截面数据更严重的异方差。11第二节异方差性的后果本节基本内容:●对参数估计统计特性的影响●

5、对参数显著性检验的影响●对预测的影响12一、对参数估计统计特性的影响(一)参数估计的无偏性仍然成立参数估计的无偏性仅依赖于基本假定中的零均值假定(即)。所以异方差的存在对无偏性的成立没有影响。(二)参数估计的方差不再是最小的同方差假定是OLS估计方差最小的前提条件,所以随机误差项是异方差时,将不能再保证最小二乘估计的方差最小。13二、对参数显著性检验的影响由于异方差的影响,使得无法正确估计参数的标准误差,导致参数估计的t统计量的值不能正确确定,所以,如果仍用t统计量进行参数的显著性检验将失去意义。14

6、尽管参数的OLS估计量仍然无偏,并且基于此的预测也是无偏的,但是由于参数估计量不是有效的,从而对Y的预测也将不是有效的。三、对预测的影响15第三节异方差性的检验常用检验方法:●图示检验法●Goldfeld-Quanadt检验●White检验●ARCH检验16一、图示检验法(一)相关图形分析方差描述的是随机变量取值的(与其均值的)离散程度。因为被解释变量与随机误差项有相同的方差,所以利用分析与的相关图形,可以初略地看到的离散程度与之间是否有相关关系。如果随着的增加,的离散程度为逐渐增大(或减小)的变化趋

7、势,则认为存在递增型(或递减型)的异方差。17用1998年四川省各地市州农村居民家庭消费支出与家庭纯收入的数据,绘制出消费支出对纯收入的散点图,其中用表示农村家庭消费支出,表示家庭纯收入。图形举例18设一元线性回归模型为:运用OLS法估计,得样本回归模型为:由上两式得残差:绘制出对的散点图◆如果不随而变化,则表明不存在异方差;◆如果随而变化,则表明存在异方差。(二)残差图形分析19二、Goldfeld-Quanadt检验作用:检验递增性(或递减性)异方差。基本思想:将样本分为两部分,然后分别对两个样本

8、进行回归,并计算两个子样的残差平方和所构成的比,以此为统计量来判断是否存在异方差。(一)检验的前提条件1、要求检验使用的为大样本容量。2、除了同方差假定不成立外,其它假定均满足。20(二)检验的具体做法1.排序将解释变量的取值按从小到大排序。2.数据分组将排列在中间的约1/4的观察值删除掉,记为,再将剩余的分为两个部分,每部分观察值的个数为。3.提出假设214.构造F统计量分别对上述两个部分的观察值求回归模型,由此得到的两个部分的残差平方为和。为前一部分

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。