资源描述:
《数学华东师大版七年级下册三角形中线、角平分线、高 (1).ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、七年级数学备课组9.1认识三角形三角形的中线、角平分线、高学习目标1、了解三角形的3条重要线段(中线、角平分线、高)的概念。2、会画任意三角形的中线、角平分线、高。自学指导认真自学课本75页,并完成下面自学效果检测。要求:1、了解三角形的3条重要线段(中线、角平分线、高)的概念。2、会画任意三角形的中线、角平分线、高。15分钟后,合作交流,并进行展示!小组内部交流流程1.交流自学课本过程中遇到的疑难问题。2.针对《自学效果检测》,在小组内形成统一认识,并对组内自学能力较差同学进行帮助。3.小组讨论时要求人人发言,提出各自预习时不理解的问题,使预习问题条理化,达到学生预习预定目标。5分钟后成果
2、展示三角形的中线在三角形中,连接一个顶点与它对边中点的线段,叫做这个三角形这边的中线.ABCD∵AD是△ABC的中线∴BD=CD=12BC任意画一个三角形,然后利用刻度尺画出这个三角形三条边的中线,你发现了什么?●●三角形的三条中线相交于一点,交点在三角形的内部.三角形中线的理解EFO三角形的角平分线叫做三角形的角平分线。ABCD∵AD是△ABC的角平分线∴∠BAD=∠CAD=12∠BAC任意画一个三角形,然后利用量角器画出这个三角形三个角的角平分线,你发现了什么?●●在三角形中,一个内角的角平分线与它的对边相交,这个角的顶点与交点之间的线段,三角形的三条角平分线相交于一点,交点在三角形的内
3、部︶︶12ACBFEDO∵BE是△ABC的角平分线∴____=_____=_____∴∠ACB=2______=2______∠ABE∠CBE∠ABC∠ACF∵CF是△ABC的角平分线∠BCF角平分线的理解三角形的角平分线与角的平分线有什么区别?思考三角形的角平分线是一条线段,角的平分线是一条射线你还记得“过一点画已知直线的垂线”吗?012345678910012345012345画法012345678910012345012345012345678910012345012345过三角形的一个顶点,你能画出它的对边的垂线吗?BAC三角形的高A从三角形的一个顶点BC向它的对边所在直线作垂线,顶
4、点和垂足D之间的线段叫做三角形这边的高,简称三角形的高。如图,线段AD是BC边上的高.任意画一个锐角△ABC,和垂足的字母.ABC请你画出BC边上的高.注意!标明垂直的记号D锐角三角形的三条高每人画一个锐角三角形纸片。(1)你能画出这个三角形的三条高吗?(3)这三条高之间有怎样的位置关系?将你的结果与同伴进行交流.锐角三角形的三条高交于同一点.(2)你能用折纸的办法得到它们吗?O锐角三角形的三条高是在三角形的内部还是外部?锐角三角形的三条高都在三角形的内部。ABCDEF使折痕过顶点,顶点的对边边缘重合直角三角形的三条高在纸上画出一个直角三角形。将你的结果与同伴进行交流.ABC(1)画出直角三
5、角形的三条高,直角边BC边上的高是;AB直角边AB边上的高是;CB它们有怎样的位置关系?直角三角形的三条高交于直角顶点.D斜边AC边上的高是;BD●钝角三角形的三条高ABCDEF议一议(1)钝角三角形的三条高交于一点吗?钝角三角形的三条高不相交于一点它们所在的直线交于一点吗?将你的结果与同伴进行交流.钝角三角形的三条高所在直线交于一点O∵AD是△ABC的高ABCD∴∠BDA=∠CDA=90°三角形的高的表示法由三角形的高可以得出什么结论?小结:三角形的高从三角形中的一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段叫做三角形这边的高。三角形的三条高的特性:高所在的直线是否相交高之间是否相
6、交高在三角形内部的数量钝角三角形直角三角形锐角三角形311相交相交不相交相交相交相交三角形的三条高所在直线交于一点三条高所在直线的交点的位置三角形内部直角顶点三角形外部现在做中考题如图,在⊿ABC中,∠1=∠2,G为AD中点,延长BG交AC于E,F为AB上一点,CF⊥AD于H,判断下列说法那些是正确的,哪些是错误的.⌒⌒ABCDE12FGH①AD是⊿ABE的角平分线()②BE是⊿ABD边AD上的中线()③BE是⊿ABC边AC上的中线()④CH是⊿ACD边AD上的高()三角形的高、中线与角平分线都是线段×××√拓展练习2、如果一个三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是()A
7、.锐角三角形B.直角三角形C.钝角三角形D.锐角三角形1、下列各组图形中,哪一组图形中AD是△ABC的高()ADCBABCDABCDABCD(A)(B)(C)(D)BD拓展练习3、填空:(1)如图(1),AD,BE,CF是ΔABC的三条中线,则AB=2,BD=,AE=。(2)如图(2),AD,BE,CF是ΔABC的三条角平分线,则∠1=,∠3=,∠ACB=2。AFCDAC∠2∠ABC∠4拓展练习3.如图,在Δ