求切线、切线方程、极值、最值相关的问题(有解析式问题).doc

求切线、切线方程、极值、最值相关的问题(有解析式问题).doc

ID:48983660

大小:364.00 KB

页数:7页

时间:2020-02-26

求切线、切线方程、极值、最值相关的问题(有解析式问题).doc_第1页
求切线、切线方程、极值、最值相关的问题(有解析式问题).doc_第2页
求切线、切线方程、极值、最值相关的问题(有解析式问题).doc_第3页
求切线、切线方程、极值、最值相关的问题(有解析式问题).doc_第4页
求切线、切线方程、极值、最值相关的问题(有解析式问题).doc_第5页
资源描述:

《求切线、切线方程、极值、最值相关的问题(有解析式问题).doc》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、求切线、切线方程、极值、最值相关的问题1练习1.函数的图象在处的切线方程是______________________2.设函数,,则的最大值为____________,最小值为_________。例1.已知函数在x=-3和x=1时取得极值.[来源:XXK](1)求a,b的值;(2)求函数在[-4,2]上的最大值和最小值.练习1.设函数,,则的最大值为________,最小值为_______.2.曲线在处的切线方程为________________________3.已知曲线的一条切线的斜率为,则切点的横坐标为____________4.

2、已知函数.(Ⅰ)若为的极值点,求的值;(Ⅱ)若的图象在点()处的切线方程为,求在上的最大值和最小值.例2.已知函数其中,且曲线在点处的切线斜率为3.(I)求的值;(II)若函数在处取得极大值,求的值.例3.已知a∈R,函数f(x)=+lnx-1。(Ⅰ)当a=1时,求曲线y=f(x)在点(2,f(2))处的切线方程;(Ⅱ)求f(x)在区间(0,e]上的最小值。求切线、切线方程、极值、最值相关的问题1答案练习1.;2.,;例1.(1);(2)最大值是,最小值是练习1.;2.;3.;4.(Ⅰ)或,(Ⅱ)最大值是,最小值是例2.(Ⅰ),(Ⅱ)例3

3、.(Ⅰ);(Ⅱ)①当时,无最小值;②当时,;③当时,求切线、切线方程、极值、最值相关的问题21.在区间上的最大值是_______________;2.曲线在点处的切线的方程为_______________;3.设,若函数有大于零的极值点,则A.B.C.D.4.若既有极大值又有极小值,则的取值范围_______________;5.函数在上()A.有最大值,无最小值B.有最大值和最小值C.有最小值,无最大值D.既无最大值也无最小值6.若函数,给出下面四个结论:①是的极大值,是的极小值;②的解集为;③没有最小值,也没有最大值;④有最小值,没有

4、最大值,其中正确结论的序号有__________________.7.设函数。(Ⅰ)求的极大值点与极小值点;(Ⅱ)求在区间上的最大值与最小值。8.已知函数.(1)求函数的最小值;(2)设,求的图象与的图象的公共点个数。9.已知为常数)在上有最大值是3,那么在上的最小值是。10.函数的最大值是,最小值是。11.已知函数在区间上的最大值为,则。12.已知函数在区间上为减函数,则的取值范围是。13.若,则函数的单调递减区间为.14.已知函数在处有极值。(Ⅰ)求实数的值;(Ⅱ)求函数的单调区间。15.已知函数。(I)求函数的单调区间;(II)设,

5、求函数在区间上的最小值。16.已知曲线.(Ⅰ)求函数在处的切线;(Ⅱ)当时,求曲线与直线的交点个数;(Ⅲ)若,求证:函数在上单调递增.求切线、切线方程、极值、最值相关的问题2答案1.;2.;3.A;4.或;5.B;6.①②④;7.(Ⅰ)为极小值点;为极大值点;(Ⅱ)最大值是,最小值是8.(1)最小值是;(2)一个9.;10。最大值是,最小值是;11.;12.13.和14.(Ⅰ),;(Ⅱ)增区间为,减区间为15.(Ⅰ)增区间为,减区间为;(Ⅱ)①当时,;②当时,;③当时,16.(Ⅰ);(Ⅱ)3个;(Ⅲ)用反证法:要证时,函数在上单调递增.,

6、,成立17.(本小题满分13分)设,函数的导函数为.(Ⅰ)求的值,并比较它们的大小;(Ⅱ)求函数的极值.19.(本小题满分14分)设函数,其中.(Ⅰ)若函数的图象在点处的切线与直线平行,求实数的值;(Ⅱ)求函数的极值.

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。