欢迎来到天天文库
浏览记录
ID:48959951
大小:31.50 KB
页数:4页
时间:2020-02-26
《平行线判定定理.docx》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、平行线判定定理教学目标 1.了解推理、证明的格式,理解判定定理的证法. 2.掌握平行线的第二个判定定理,会用判定公理及定理进行简单的推理论证. 3.通过第二个判定定理的推导,培养学生分析问题、进行推理的能力. 4.使学生了解知识来源于实践,又服务于实践,只有学好文化知识,才有解决实际问题的本领,从而对学生进行学习目的的教育. 二、学法引导 1.教师教法:启发式引导发现法. 2.学生学法:积极参与、主动发现、发展思维. 三、重点·难点及解决办法 (一)重点 判定定理的推导和例题的解答. (二)难点 使用符号语言进
2、行推理. (三)解决办法 1.通过教师正确引导,学生积极思维,发现定理,解决重点. 2.通过教师指导,学生自行完成推理过程,解决难点及疑点. 四、课时安排 1课时 五、教具学具准备 三角板、投影仪、自制胶片. 六、师生互动活动设计 1.通过设计练习,复习基础,创造情境,引入新课. 2.通过教师指导,学生探索新知,练习巩固,完成新授. 3.通过学生自己总结完成小结. 七、教学步骤 (一)明确目标 掌握平行线的第二个定理的推理,并能运用其进行简单的证明,培养学生的逻辑思维能力. (二)整体感知 以情境创设,
3、设计悬念,引出课题,以引导学生的思维,发现新知,以变式训练巩固新知. (三)教学过程 创设情境,复习引入 师:上节课我们学习了平行线的判定公理和一种判定方法,根据所学看下面的问题(出示投影). 1.如图1所示,直线 、 被直线 所截,如果 ,那么 ,为什么? 2.如图2,如果 ,那么 ,为什么?图1 图2 3.如图3,直线 、 被直线 所截.(1)如果 ,那么,为什么? (2)如果 ,那么 ,为什么? 4.如图4,一个弯形管道 的拐角 , ,这时管道、 平行吗? 图3 图4 学生活动:
4、学生口答第1、2题. 师:你能说出有什么条件,就可以判定两条直线平行呢? 学生活动:由第l、2题,学生思考分析,只要有同位角相等或内错角相等,就可以判定两条直线平行. 教师将第3题图形画在黑板上. 学生活动:学生口答理由,同角的补角相等. 师:要求学生写出符号推理过程,并板书. [板书]∵ (已知), (邻补角定义), ∴ (同角的补角相等). (以备后面推导判定定理使用.) 【教法说明】本节课是前一节课的继续,是在前一节课的基础上进行学习的,所以通过第1、2两题复习上节课所学平行线判定的两个方法,使学生明确,只
5、要有同位角相等或内错角相等,就可以判定两条直线平行.第3题是为推导本节到定定理做铺垫,即如果同旁内角互补,则可以推出同位角相等,也可以推出内错角相等,为定理的推理论证,分散了难点. 师:第4题是一个实际问题,题目中已知的两个角是什么位置关系角? 学生活动:同分内角. 师:它们有什么关系. 学生活动:互补. 师:这个问题就是知道同分内角互补了,那么两条直线是不是平行的呢?这就是这节课我们要研究的问题. [板书]2.5 平行线的判定(2)【教法说明】通过一个实际问题,引出本节所学问题,同时使学生了解几何知识和我们的实际生活是紧
6、密相连的,要解决实际问题就要学习新知识,从而激发学生的学习兴趣. 探究新知,讲授新课 师:请同学们看复习提问中的第3题,我们知道了 与 互补,那么 ,由此你还可以推出什么?根据什么? 学生活动:学生思考、回答,还可以推出 ,这个推理的全过程就是:
此文档下载收益归作者所有