《18.2.1 矩形》教案4.doc

《18.2.1 矩形》教案4.doc

ID:48945907

大小:51.00 KB

页数:5页

时间:2020-02-26

《18.2.1 矩形》教案4.doc_第1页
《18.2.1 矩形》教案4.doc_第2页
《18.2.1 矩形》教案4.doc_第3页
《18.2.1 矩形》教案4.doc_第4页
《18.2.1 矩形》教案4.doc_第5页
资源描述:

《《18.2.1 矩形》教案4.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、《矩形》教案一、教学目标:1.掌握矩形的概念和性质,理解矩形与平行四边形的区别与联系.2.会初步运用矩形的概念和性质来解决有关问题.3.渗透运动联系、从量变到质变的观点.二、重点、难点:1、重点:矩形的性质.2、难点:矩形的性质的灵活应用.3、难点的突破方法:矩形是在平行四边形的前提下定义的.从定义出发,首先应该肯定,矩形是平行四边形,但它是特殊的平行四边形特殊之处就是有一个角是直角.因此在教学采用运动方式探索矩形的概念及性质,如用多媒体或教具演示,从平行四边形到矩形的演变过程,得到矩形的概念,并理解矩形与平行四边形的关系.通过教学还要使学生明确:(1)矩形

2、是特殊的平行四边形;(2)矩形只比平行四边形多一个条件:“有一个角是直角”,不能用“四个角都是直角的行四边形是矩形”来定义矩形;(3)矩形是特殊的平行四边形,具有平行四边形的一切性质(共性),还具有它自己特殊的性质(个性).从边、角、对角线方面(可继续演示教具),让学生观察或度量猜想矩形的特殊性质.(1)边:对边与平行四边形性质相同,邻边互相垂直(与性质1等价);(2)角:四个角是直角(性质1);(3)对角钱:相等且互相平分(性质2).引导学生利用矩形与平行四边形的从属关系、矩形的概念以及全等三角形的知识,规范证明两条性质及推论.并指出:推论叙述了直角三角形

3、中线段的倍分关系,是直角三角形很重要的一条性质,在求线段长或求线段倍分关系时,常用到这个结论.矩形ABCD的两条对角线AC,BD把矩形分成四个等腰三角形,即△AOB,△BOC,△COD和△DOA.让学生证明后熟记这个结论,以便在复杂图形中尽快找到解题的思路.三、课堂引入:1、展示生活中一些平行四边形的实际应用图片(推拉门,活动衣架,篱笆、井架等),想一想:这里面应用了平行四边形的什么性质?2、思考:拿一个活动的平行四边形教具,轻轻拉动一个点,观察不管怎么拉,它还是一个平行四边形吗?为什么?(动画演示拉动过程如图)3、再次演示平行四边形的移动过程,当移动到一个

4、角是直角时停止,让学生观察这是什么图形?(小学学过的长方形)引出本课题及矩形定义.矩形定义:有一个角是直角的平行四边形叫做矩形(通常也叫长方形).矩形是我们最常见的图形之一,例如书桌面、教科书的封面等都有矩形形象.探究:在一个平行四边形活动框架上,用两根橡皮筋分别套在相对的两个顶点上(作出对角线),拉动一对不相邻的顶点,改变平行四边形的形状.①随着∠α的变化,两条对角线的长度分别是怎样变化的?②当∠α是直角时,平行四边形变成矩形,此时它的其他内角是什么样的角?它的两条对角线的长度有什么关系?操作,思考、交流、归纳后得到矩形的性质.矩形性质1:矩形的四个角都是

5、直角.矩形性质2:矩形的对角线相等.如图,在矩形ABCD中,AC、BD相交于点O,由性质2有AO=BO=CO=DO=AC=BD.因此可以得到直角三角形的一个性质:直角三角形斜边上的中线等于斜边的一半.四、例习题分析:例1(教材P53例1)已知:如图,矩形ABCD的两条对角线相交于点O,∠AOB=60°,AB=4,求矩形对角线的长.分析:因为矩形是特殊的平行四边形,所以它具有对角线相等且互相平分的特殊性质,根据矩形的这个特性和已知,可得△OAB是等边三角形,因此对角线的长度可求.解:∵四边形ABCD是矩形,∴AC与BD相等且互相平分.∴OA=OB.又∠AOB=

6、60°,∴△OAB是等边三角形.∴矩形的对角线长AC=BD=2OA=2×4=8.例2(补充)已知:如图,矩形ABCD,AB长8cm,对角线比AD边长4cm.求AD的长及点A到BD的距离AE的长.分析:(1)因为矩形四个角都是直角,因此矩形中的计算经常要用到直角三角形的性质,而此题利用方程的思想,解决直角三角形中的计算,这是几何计算题中常用的方法.略解:设AD=xcm,则对角线长(x+4)cm,在Rt△ABD中,由勾股定理:,解得x=6.则AD=6cm.(2)“直角三角形斜边上的高”是一个基本图形,利用面积公式,可得到两直角边、斜边及斜边上的高的一个基本关系式

7、:AE×DB=AD×AB,解得AE=4.8cm.例3(补充)已知:如图,矩形ABCD中,E是BC上一点,DF⊥AE于F,若AE=BC.求证:CE=EF.分析:CE、EF分别是BC,AE等线段上的一部分,若AF=BE,则问题解决,而证明AF=BE,只要证明△ABE≌△DFA即可,在矩形中容易构造全等的直角三角形.证明:∵四边形ABCD是矩形,∴∠B=90°,且AD∥BC.∴∠1=∠2.∵DF⊥AE,∴∠AFD=90°.∴∠B=∠AFD.又AD=AE,∴△ABE≌△DFA(AAS).∴AF=BE.∴EF=EC.此题还可以连接DE,证明△DEF≌△DEC,得到EF

8、=EC.五、随堂练习:1、填空.(1)矩形的定义中有

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。