用计算器求立方根、用有理数估计一个数立方根的大小.doc

用计算器求立方根、用有理数估计一个数立方根的大小.doc

ID:48835158

大小:223.50 KB

页数:2页

时间:2020-02-28

用计算器求立方根、用有理数估计一个数立方根的大小.doc_第1页
用计算器求立方根、用有理数估计一个数立方根的大小.doc_第2页
资源描述:

《用计算器求立方根、用有理数估计一个数立方根的大小.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、6.1 平方根第1课时 算术平方根                 1.了解算术平方根的概念,会用根号表示一个数的算术平方根;2.根据算术平方根的概念求出非负数的算术平方根;(重点)3.了解算术平方根的性质.(难点)一、情境导入在我校举行的绘画比赛中,欢欢同学准备了一些正方形的画布,若知道画布的边长,你能计算出它们的面积吗?若知道画布的面积,你能求出它们的边长吗?表一正方形的边长120.5正方形的面积140.25表一:已知一个正数,求这个正数的平方.表二正方形的面积140.3649正方形的边长120.67表二:已知一个正数的平方,求这个正数.表一和表二中的两种运算有什么关系?二、合

2、作探究探究点一:算术平方根的概念【类型一】求一个数的算术平方根求下列各数的算术平方根:(1)64;(2)2;(3)0.36;(4).解析:根据算术平方根的定义求非负数的算术平方根,只要找到一个非负数的平方等于这个非负数即可.解:(1)∵82=64,∴64的算术平方根是8;-2-(2)∵()2==2,∴2的算术平方根是;(3)∵0.62=0.36,∴0.36的算术平方根是0.6;(4)∵=,又∵92=81,∴=9.而32=9,∴的算术平方根是3.方法总结:(1)求一个数的算术平方根时,首先要弄清是求哪个数的算术平方根,分清求与81的算术平方根的不同意义,不要被表面现象迷惑;(2)求一

3、个非负数的算术平方根常借助平方运算,因此熟记常用平方数对求一个数的算术平方根十分有用.变式训练:见《学练优》本课时练习“课堂达标训练”第7题【类型二】利用算术平方根的定义求值3+a的算术平方根是5,求a的值.解析:先根据算术平方根的定义,求出3+a的值,再求a.解:因为52=25,所以25的算术平方根是5,即3+a=25,所以a=22.方法总结:已知一个数的算术平方根,可以根据平方运算来解题.变式训练:见《学练优》本课时练习“课后巩固提升”第10题探究点二:算术平方根的性质【类型一】含算术平方根式子的运算计算:+-.解析:首先根据算术平方根的定义进行开方运算,再进行加减运算.解:+

4、-=7+5-15=-3.方法总结:解题时容易出现如=+的错误.变式训练:见《学练优》本课时练习“课堂巩固提升”第8题【类型二】算术平方根的非负性已知x,y为有理数,且+3(y-2)2=0,求x-y的值.解析:算术平方根和完全平方都具有非负性,即≥0,a2≥0,由几个非负数相加和为0,可得每一个非负数都为0,由此可求出x和y的值,进而求得答案.解:由题意可得x-1=0,y-2=0,所以x=1,y=2.所以x-y=1-2=-1.方法总结:算术平方根、绝对值和完全平方都具有非负性,即≥0,

5、a

6、≥0,a2≥0,当几个非负数的和为0时,各数均为0.变式训练:见《学练优》本课时练习“课后巩固

7、提升”第9题三、板书设计算术平方根让学生正确、深刻地理解算术平方根的概念,需要由浅入深、不断深化.概念的形成过程也是思维过程,加强概念形成过程的教学,对提高学生的思维水平是很有帮助的.概念教学过程中要做到:讲清概念,加强训练,逐步深化-2-

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。