椭圆及其标准方程 (教学设计).doc

椭圆及其标准方程 (教学设计).doc

ID:48831403

大小:152.50 KB

页数:7页

时间:2020-01-31

椭圆及其标准方程   (教学设计).doc_第1页
椭圆及其标准方程   (教学设计).doc_第2页
椭圆及其标准方程   (教学设计).doc_第3页
椭圆及其标准方程   (教学设计).doc_第4页
椭圆及其标准方程   (教学设计).doc_第5页
资源描述:

《椭圆及其标准方程 (教学设计).doc》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、.《椭圆及其标准方程》的教学设计武威市民勤县第一中学赵秀梅一、教学目标:1.知识与技能目标:(1)掌握椭圆定义和标准方程.(2)能用椭圆的定义解决一些简单的问题.2.过程与方法目标:(1)通过椭圆定义的归纳和标准方程的推导,培养学生发现规律、认识规律并利用规律解决实际问题的能力.(2)在椭圆定义的获得和其标准方程的推导过程中进一步渗透数形结合等数学思想和方法3.情感态度与价值观目标:(1)通过椭圆定义的归纳过程获得培养学生探索数学的兴趣.(2)通过标准方程的推导培养学生求简意识并能懂得欣赏数学的“简洁美”.(3)通过师生、生生的合作学习,增强学生团队协作能力的培养,增强主动与他人合

2、作交流的意识.二、教学重点、难点:1.重点:椭圆定义的归纳及其标准方程的推导.2.难点:椭圆标准方程的推导.三、教材与教法分析(一)、教材分析、学情分析:本节课是圆锥曲线的第一课时.它是在学生学习了直线和圆的方程的基础上,进一步学习用坐标法研究曲线.椭圆的学习为后面研究双曲线、抛物线提供了基本模式和理论基础.因此这节课有承前启后的作用,是本章和本节的重点内容;椭圆的标准方程推导过程中,化简两个根式的方程的方法特殊,学生初次遇到,难度较大.(二)、教学方法和教学策略分析:探究式、启发式教学方法,引导学生主动参与、积极体验、自主探究,形成师生互动的教学氛围...以启发、引导为主,采用设

3、疑的形式,逐步让学生进行探究性的学习.充分利用了青少年学生富有创造性和好奇心,敢想敢为,对新事物具有浓厚的兴趣的特点.让学生根据教学目标的要求和题目中的已知条件,自觉主动地创造性地去分析问题、讨论问题、解决问题.四、教具:多媒体直尺、细绳、钉子、笔、小木黑板第一课时五、教学过程设计:新课引入2010年10月1日,中国的航天史又被翻开了新的一页,我国自主研制的嫦娥二号探月卫星升上太空,在太空中探索宇宙的奥秘.这一事件,再一次向世界表明,我们中国人有信心、有能力攀登一个又一个科学高峰.“嫦娥二号”升空后,准确的进入预定轨道,它运行中期的轨道是一个椭圆.在宇宙中还有许多天体的运行轨道也是

4、椭圆,生活中也有许多椭圆形的实际例子。由此看来,若要探索浩瀚宇宙的奥秘,解决日常生活中与椭圆有关的一些实际问题,需要对椭圆这一图形进行研究.今天我们就来研究什么是椭圆及椭圆的标准方程.那么什么是椭圆呢?(一)认识椭圆,问题引出:1.对椭圆的感性认识.通过演示课前老师和学生共同准备的有关椭圆的实物和图片,让学生从感性上认识椭圆.(演示:天体运行轨道;生活实例:平面截圆锥等图片)2.对比圆的定义:平面内与定点的距离等于定长的点的集合.如果将圆的定义中的“定点”改为“两定点”,“距离”改为“距离的和”,那么平面内到两定点的距离的和等于定长的点的集合(轨迹)是什么图形?(二)动手实验,亲身

5、体验指导学生互相合作(主要在于动手),体验画椭圆的过程(课前准备直尺、细绳、钉子、笔、纸板),并以此了解椭圆上的点的特征.请三名同学上台画在黑板上.注:在本环节中不急于向学生交待椭圆的定义,而是先设计一个实验,一来是为了给学生一个创造实验的机会,让学生体会椭圆上点的运动规律;二是通过实践,为进一步上升到理论做准备.先在画板上点两点F1、F2,取一定长的细绳,把它的两端固定在画板上的F1、F2两点处.【演示一】当绳长等于

6、F1F2

7、时,使笔尖贴紧绳子慢慢移动.(1)、观察:笔尖的轨迹是一个什么图形?明确:一条线段..(2)、这条线段上的每一个点到F1、F2两点的距离和都相等吗?明确:

8、相等,而且都等于这条绳长【演示二】当绳子长大于

9、F1F2

10、时,用笔尖把绳子拉紧,绳子尽量贴紧画板,使笔尖在画板上慢慢移动(学生亲手画),就可以在平面内画出一个椭圆(动画演示)(三)归纳定义【引导】根据画图的过程,请同学们思考椭圆上的点有什么共同特征?提问:(1)在画图的过程中,绳长变了吗?明确:没有(2)在画图过程中,绳子始终是紧绷的,那么我们画出的曲线上的点到F1、F2两点的距离之和始终满足什么关系?明确:与绳长相等.对,绳长没有发生变化,这说明椭圆上每一点到F1、F2两点的距离的和都相等,且都是绳长这一定值。这就说明,椭圆上的点除了要满足到两定点F1、F2的距离和相等之外,这个

11、距离和还要比

12、F1F2

13、大。请大家回想刚才的画图过程,使笔尖贴紧绳子且贴紧黑板(表明在同一平面内),又保证绳长大于

14、F1F2

15、,这样就在平面内画出了椭圆,所有具有这些特征的点集在一起就形成了椭圆.再次(运用几何画板的度量工具)演示椭圆上任意一点到两焦点的距离的和都相等(为定值).那么请同学们给椭圆下个定义吧.引导学生归纳出椭圆的定义.椭圆定义:平面内与两个定点的距离的和等于常数(大于)的点的轨迹叫做椭圆.巩固练习:平面内有两定点A、B,它们之间的距离为6cm.(1)若

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。