运用一元二次方程解决图形面积问题 (2).ppt

运用一元二次方程解决图形面积问题 (2).ppt

ID:48813309

大小:66.00 KB

页数:14页

时间:2020-01-28

运用一元二次方程解决图形面积问题 (2).ppt_第1页
运用一元二次方程解决图形面积问题 (2).ppt_第2页
运用一元二次方程解决图形面积问题 (2).ppt_第3页
运用一元二次方程解决图形面积问题 (2).ppt_第4页
运用一元二次方程解决图形面积问题 (2).ppt_第5页
资源描述:

《运用一元二次方程解决图形面积问题 (2).ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、相似三角形对应角相等,对应边成比例的三角形叫相似三角形.三角形相似判定:1.对应角相等,对应边成比例。2.预备定理:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似。3.判定定理1:两角对应相等,两三角形相似。4.判定定理2:两边对应成比例且夹角相等,两三角形相似。5.判定定理3:三边对应成比例,两三角形相似。定义:直角三角形相似判定的情况除以上5种方法外,还有:1.直角三角形被斜边上的高分成的两个直角三角形相似。2.如果一个三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么着两个直角三角形相似。1.下列命题正确的是

2、()A.有一角相等且有两边对应成比例的两个三角形相似。B.△ABC的三边长为3,4,5.△A’B’C’的三边为a+3,a+4,a+5.则△ABC∽△A’B’C’。C.若两个三角形相似,且有一对边相等,则它们的相似比为1.D.都有一内角为100°的两个等腰三角形相似。31031010801080∵∠ABC=∠DBC∠BDC=∠BCA∴△ABC∽△CBD1.下列命题正确的是()A.有一角相等且有两边对应成比例的两个三角形相似。B.△ABC的三边长为3,4,5.△A’B’C’的三边为a+3,a+4,a+5.则△ABC∽△A’B’C’。C.若两个三角形相似,且有一对边相等,则它们的相似

3、比为1.D.都有一内角为100°的两个等腰三角形相似。D2.过矩形ABCD的顶点A作对角线AC的垂线分别与CB,CD的延长线交于E,F.则图中与△ABC相似的三角形()。A.4个B.5个C.6个D.7个C相似三角形的性质:1.对应角相等,对应边成比例.2.相似三角形对应高的比,对应中线的比,对应角平分线的比,周长的比都等于相似比.3.相似三角形面积的比等于相似比的平方.3.如图,梯形ABCD中AB∥CD,AB=a,BD=b, CD=c,若∠DBC=∠A,则a,b,c使方程aX2-2bX+c=0有()A.没有实数根B.有两个相等实根C.有两个不等实根D.以上都不对3.如图,梯形A

4、BCD中AB∥CD,AB=a,BD=b, CD=c,若∠DBC=∠A,则a,b,c使方程aX2-2bX+c=0有()分析:abc∵AB∥CD∴∠ABD=∠BDC又∵∠DBC=∠A∴△ABD∽△BDC∴AB:BD=BD:CD∴a:b=b:c∴b2=ac3.如图,梯形ABCD中AB∥CD,AB=a,BD=b, CD=c,若∠DBC=∠A,则a,b,c使方程aX2-2bX+c=0有()A.没有实数根B.有两个相等实根C.有两个不等实根D.以上都不对B4.BD,CE是△ABC的高,直线DG⊥BC,且与直线BA,CE,BC相交于H,F,G.求证:GD2=GF•GH分析:∵△BGD∽△DG

5、C∴DG:CG=BG:DG∴DG2=BG•CG∵△BGH∽△FGC∴GH:GC=BG:GF∴BG•CG=GH•GF5.如图,直角梯形ABCD中,AD∥BC,∠BCD=900,对角线AC与BD交于点O,OE⊥CD于点E,求证:∠1=∠212再见

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。