欢迎来到天天文库
浏览记录
ID:48765889
大小:1.33 MB
页数:27页
时间:2020-01-22
《空间几何体章末整合提升1.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、空间几何体第一章章末整合提升第一章专题突破2知识网络1知识网络专题突破专题一 几何体的三视图和直观图空间几何体的三视图、直观图以及两者之间的转化是本章的难点,也是重点.解题需要依据它们的概念及画法规则,同时还要注意空间想象能力的运用.三视图和直观图是空间几何体的两种不同的表现形式.这两种不同的表现形式能够帮助我们从不同侧面、不同角度认识几何体的结构特征,进而研究几何体的有关性质.三视图和直观图联系密切,由空间几何体的直观图可以画出它的三视图,同样由空间几何体的三视图可以想象并画出这个几何体的直观图.直观图是在某一定点观察到的图形,
2、三视图是从几何体的正前方、正左方、正上方观察到的几何体轮廓线的正投影围成的平面图形.画三视图时首先要认清几何体的基本结构,可以把垂直投影的视线想象成平行光线,从正前方、正左方、正上方射向几何体,其可见的轮廓线(包括被遮挡但是可以通过想象透视到的轮廓线)就是所要画出的视图.从三视图可以看出,正视图反映几何体的长和高,侧视图反映它的宽和高,俯视图反映它的长和宽.专题二 柱体、锥体、台体的表面积和体积几何体的表面积和体积的计算是现实生活中经常遇到的问题,如制作物体的下料问题、材料最省问题、相同材料容积最大问题,都涉及表面积和体积的计算.
3、特别是特殊的柱、锥、台,在计算中要注意其中矩形、梯形及直角三角形等重要的平面图形的作用,对于圆柱、圆锥、圆台,要重视旋转轴所在的轴截面、底面圆的作用.(1)在求解空间几何体的表面积问题时,常将空间几何体的表(侧)面展开,化折(曲)为直,将空间图形问题转化为平面图形问题,这是解决立体几何问题的常用方法.(2)将一些不规则的几何体进行修补(补形法),或者将一些几何体进行分割(分割法),或者通过变换顶点和底面,利用体积相等求解(等积法)等是求空间几何体体积的重要思想方法.例如,常见的将三棱柱补成四棱柱,四棱锥分割成三棱锥,再利用四棱柱、
4、三棱锥的特殊性求体积.又如将三棱锥的顶点和底面进行交换,利用体积相等求体积或求几何体的高.专题三 球与其他几何体的简单组合体问题球与其他几何体组成的几何体通常在试题中以相切或相接的形式出现,解决此类问题常常利用截面来表现这两个几何体之间的关系,从而将空间问题转化为平面问题.(1)作适当的截面(如轴截面等)时,对于球内接长方体、正方体,则截面一要过圆心,二要过长方体或正方体的两条对角线,才有利于解题.(2)对于“内切”和“外接”等问题,首先要弄清几何体之间的相互关系,主要是指特殊的点、线、面之间的关系,然后把相关的元素放到这些关系中
5、来解决.专题四 转化与化归思想在解决具体问题时,常把复杂的、生蔬的、抽象的、困难的、未知的问题化成简单的、熟悉的、具体的、容易的、已知的问题来解决,这种数学思想叫转化与化归的思想.(1)“化曲为直”是解决立体几何问题最基本和最常用的方法,解决的关键是在空间图形展开后,弄清几何体中的有关点、线在展开图中的相应位置关系.几何体表面上两点间的最小距离问题常常转化为求其展开图中的直线段长.(2)体积的求解与计算是立体几何学习的重点,其方法灵活多样,但转化与化归的思想一直贯穿其中.①将不规则的几何体通过分割或补形,将其转化为规则几何体的体
6、积问题;②三棱锥通过转化底面和顶点从而达到求体积的目的.
此文档下载收益归作者所有