欢迎来到天天文库
浏览记录
ID:48693472
大小:1.23 MB
页数:23页
时间:2020-02-27
《立体几何文科高考题.docx》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、2011年高考立体几何文科汇编(江苏)16、如图,在四棱锥中,平面PAD⊥平面ABCD,AB=AD,∠BAD=60°,E、F分别是AP、AD的中点求证:(1)直线EF‖平面PCD;(2)平面BEF⊥平面PAD(安徽卷)(19)(本小题满分13分)如图,为多面体,平面与平面垂直,点在线段上,,,△OAB,△OAC,△ODE,△ODF都是正三角形。(Ⅰ)证明直线;(Ⅱ)求棱锥的体积.(北京卷)17.(本小题共14分)如图,在四面体PABC中,PC⊥AB,PA⊥BC,点D,E,F,G分别是棱AP,AC,BC,PB的中点.(Ⅰ)求证:
2、DE∥平面BCP;(Ⅱ)求证:四边形DEFG为矩形;(Ⅲ)是否存在点Q,到四面体PABC六条棱的中点的距离相等?说明理由.23(福建卷)20.(本小题满分12分)如图,四棱锥P-ABCD中,PA⊥底面ABCD,AB⊥AD,点E在线段AD上,且CE∥AB。(I)求证:CE⊥平面PAD;(11)若PA=AB=1,AD=3,CD=,∠CDA=45°,求四棱锥P-ABCD的体积(广东)18.(本小题满分13分)图5所示的集合体是将高为2,底面半径为1的直圆柱沿过轴的平面切开后,将其中一半沿切面向右水平平移后得到的.A,A′,B,B′分
3、别为,,,的中点,分别为的中点.(1)证明:四点共面;(2)设G为AA′中点,延长到H′,使得.证明:23(湖北)18.(本小题满分12分)如图,已知正三棱柱-的底面边长为2,侧棱长为,点E在侧棱上,点F在侧棱上,且,.(I)求证:;(II)求二面角的大小。(湖南卷)19.(本题满分12分)如图3,在圆锥中,已知的直径的中点.(I)证明:(II)求直线和平面所成角的正弦值.(江西卷)18.(本小题满分12分)如图,在交AC于点D,现将(1)当棱锥的体积最大时,求PA的长;(2)若点P为AB的中点,E为23(辽宁卷)18.(本
4、小题满分12分)如图,四边形ABCD为正方形,QA⊥平面ABCD,PD∥QA,QA=AB=PD.(I)证明:PQ⊥平面DCQ;(II)求棱锥Q—ABCD的的体积与棱锥P—DCQ的体积的比值.(全国卷)20.(本小题满分l2分)(注意:在试题卷上作答无效)如图,四棱锥中,,,侧面为等边三角形,.(I)证明:平面SAB;(II)求AB与平面SBC所成的角的大小。(山东卷)19.(本小题满分12分)如图,在四棱台中,平面,底面是平行四边形,,,60°(Ⅰ)证明:;(Ⅱ)证明:.(陕西卷)16.(本小题满分12分)如图,在△ABC中,
5、∠ABC=45°,∠BAC=90°,AD是BC上的高,沿AD把△ABD折起,使∠BDC=90°。(Ⅰ)证明:平面ADB ⊥平面BDC;(Ⅱ)设BD=1,求三棱锥D—ABC的表面积。23(上海卷)20、(14分)已知是底面边长为1的正四棱柱,高。求:⑴异面直线与所成的角的大小(结果用反三角函数表示);⑵四面体的体积。(四川卷)19.(本小题共l2分)如图,在直三棱柱ABC-A1B1C1中,∠BAC=90°,AB=AC=AA1=1,延长A1C1至点P,使C1P=A1C1,连接AP交棱CC1于D.(Ⅰ)求证:PB1∥平面BDA1;
6、(Ⅱ)求二面角A-A1D-B的平面角的余弦值;23(天津卷)17.(本小题满分13分)如图,在四棱锥中,底面为平行四边形,,,为中点,平面,,为中点.(Ⅰ)证明://平面;(Ⅱ)证明:平面;(Ⅲ)求直线与平面所成角的正切值.(新课标)18.(本小题满分12分)如图,四棱锥中,底面ABCD为平行四边形,,,底面ABCD.(I)证明:;(II)设PD=AD=1,求棱锥D-PBC的高.23(浙江卷)(20)(本题满分14分)如图,在三棱锥中,,为的中点,⊥平面,垂足落在线段上.(Ⅰ)证明:⊥;(Ⅱ)已知,,,.求二面角的大小.(重庆
7、卷)20.(本小题满分12分,(Ⅰ)小问6分,(Ⅱ)小问6分)如题(20)图,在四面体中,平面ABC⊥平面,(Ⅰ)求四面体ABCD的体积;(Ⅱ)求二面角C-AB-D的平面角的正切值。232011年高考立体几何文科答案汇编(江苏卷)(安徽卷)(19)(本小题满分13分)本题考查空间直线与直线,直线与平面,平面与平面的位置关系,空间直线平行的证明,多面体体积的计算,考查空间想象能力,推理论证能力和运算求解能力.(I)证明:设G是线段DA与EB延长线的交点.由于△OAB与△ODE都是正三角形,所以=∥,OG=OD=2,同理,设是线段
8、DA与FC延长线的交点,有又由于G和都在线段DA的延长线上,所以G与重合.==在△GED和△GFD中,由=∥和OC∥,可知B和C分别是GE和GF的中点,所以BC是△GEF的中位线,故BC∥EF.23(II)解:由OB=1,OE=2,,而△OED是边长为2的正三角形,故所以过点
此文档下载收益归作者所有