欢迎来到天天文库
浏览记录
ID:33316614
大小:968.43 KB
页数:14页
时间:2019-02-24
《立体几何文科高考题》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、.高考立体几何文科汇编16、如图,在四棱锥中,平面PAD⊥平面ABCD,AB=AD,∠BAD=60°,E、F分别是AP、AD的中点求证:(1)直线EF‖平面PCD;(2)平面BEF⊥平面PAD(19)(本小题满分13分)如图,为多面体,平面与平面垂直,点在线段上,,,△OAB,△OAC,△ODE,△ODF都是正三角形。(Ⅰ)证明直线;(Ⅱ)求棱锥的体积.17.(本小题共14分)如图,在四面体PABC中,PC⊥AB,PA⊥BC,点D,E,F,G分别是棱AP,AC,BC,PB的中点.(Ⅰ)求证:DE∥平面BCP;(Ⅱ)求证:四边形DEFG为矩形;(
2、Ⅲ)是否存在点Q,到四面体PABC六条棱的中点的距离相等?说明理由.20.(本小题满分12分)如图,四棱锥P-ABCD中,PA⊥底面ABCD,AB⊥AD,点E在线段AD上,且CE∥AB。(I)求证:CE⊥平面PAD;(11)若PA=AB=1,AD=3,CD=,∠CDA=45°,求四棱锥P-ABCD的体积...(辽宁卷)18.(本小题满分12分)如图,四边形ABCD为正方形,QA⊥平面ABCD,PD∥QA,QA=AB=PD.(I)证明:PQ⊥平面DCQ;(II)求棱锥Q—ABCD的的体积与棱锥P—DCQ的体积的比值.(全国卷)20.(本小题满分l
3、2分)(注意:在试题卷上作答无效)如图,四棱锥中,,,侧面为等边三角形,.(I)证明:平面SAB;(II)求AB与平面SBC所成的角的大小。19.(本小题满分12分)如图,在四棱台中,平面,底面是平行四边形,,,60°(Ⅰ)证明:;(Ⅱ)证明:.6.(本小题满分12分)如图,在△ABC中,∠ABC=45°,∠BAC=90°,AD是BC上的高,沿AD把△ABD折起,使∠BDC=90°。(Ⅰ)证明:平面ADB ⊥平面BDC;(Ⅱ)设BD=1,求三棱锥D—ABC的表面积。...2011年高考立体几何文科答案汇编(江苏卷)(安徽卷)(19)(本小题满
4、分13分)本题考查空间直线与直线,直线与平面,平面与平面的位置关系,空间直线平行的证明,多面体体积的计算,考查空间想象能力,推理论证能力和运算求解能力.(I)证明:设G是线段DA与EB延长线的交点.由于△OAB与△ODE都是正三角形,所以=∥,OG=OD=2,同理,设是线段DA与FC延长线的交点,有又由于G和都在线段DA的延长线上,所以G与重合.==在△GED和△GFD中,由=∥和OC∥,可知B和C分别是GE和GF的中点,所以BC是△GEF的中位线,故BC∥EF.(II)解:由OB=1,OE=2,,而△OED是边长为2的正三角形,故所以过点F作
5、FQ⊥DG,交DG于点Q,由平面ABED⊥平面ACFD知,FQ就是四棱锥F—OBED的高,且FQ=,所以(北京卷)(17)(共14分)证明:(Ⅰ)因为D,E分别为AP,AC的中点,...所以DE//PC。又因为DE平面BCP,所以DE//平面BCP。(Ⅱ)因为D,E,F,G分别为AP,AC,BC,PB的中点,所以DE//PC//FG,DG//AB//EF。所以四边形DEFG为平行四边形,又因为PC⊥AB,所以DE⊥DG,所以四边形DEFG为矩形。(Ⅲ)存在点Q满足条件,理由如下:连接DF,EG,设Q为EG的中点由(Ⅱ)知,DF∩EG=Q,且QD
6、=QE=QF=QG=EG.分别取PC,AB的中点M,N,连接ME,EN,NG,MG,MN。与(Ⅱ)同理,可证四边形MENG为矩形,其对角线点为EG的中点Q,且QM=QN=EG,所以Q为满足条件的点.(福建卷)20.本小题主要考查直线与直线、直线与平面的位置关系,几何体的体积等基础知识;考查空间想象能力,推理论证能力,运算求解能力;考查数形结合思想,化归与转化思想,满分12分(I)证明:因为平面ABCD,平面ABCD,所以因为又所以平面PAD。(II)由(I)可知,在中,DE=CD又因为,所以四边形ABCE为矩形,所以又平面ABCD,PA=1,所
7、以(广东)18.(本小题满分13分)证明:(1)中点,连接BO2直线BO2是由直线AO1平移得到共面。(2)将AO1延长至H使得O1H=O1A,连接...//由平移性质得=HB(湖北卷)18.本小题主要考查空间直线与平面的位置关系和二面角的求法,同时考查空间想象能力和推理论证能力。(满分12分)解法1:(Ⅰ)由已知可得于是有所以又由(Ⅱ)在中,由(Ⅰ)可得于是有EF2+CF2=CE2,所以又由(Ⅰ)知CFC1E,且,所以CF平面C1EF,又平面C1EF,故CFC1F。于是即为二面角E—CF—C1的平面角。由(Ⅰ)知是等腰直角三角形,所以,即所求
8、二面角E—CF—C1的大小为。解法2:建立如图所示的空间直角坐标系,则由已知可得...(Ⅰ)(Ⅱ),设平面CEF的一个法向量为由即设侧面BC1的一个法
此文档下载收益归作者所有