数学北师大版九年级下册2.4 二次函数的应用.pptx

数学北师大版九年级下册2.4 二次函数的应用.pptx

ID:48668476

大小:212.54 KB

页数:10页

时间:2020-01-19

数学北师大版九年级下册2.4 二次函数的应用.pptx_第1页
数学北师大版九年级下册2.4 二次函数的应用.pptx_第2页
数学北师大版九年级下册2.4 二次函数的应用.pptx_第3页
数学北师大版九年级下册2.4 二次函数的应用.pptx_第4页
数学北师大版九年级下册2.4 二次函数的应用.pptx_第5页
资源描述:

《数学北师大版九年级下册2.4 二次函数的应用.pptx》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、2.4二次函数的应用北师大版九年级下册第二章《二次函数》大成中学自银琴(1)设矩形的一边AB=xm,那么AD边的长度如何表示?(2)设矩形的面积为ym2,当x取何值时,y的值最大?最大值是多少?何时面积最大如图,在一个直角三角形的内部作一个矩形ABCD,其中AB和AD分别在两直角边上.M40m30mABCD┐认真分析,仔细思考(1)设矩形的一边AB=xm,那么AD边的长度如何表示?(2)设矩形的面积为ym2,当x取何值时,y的值最大?最大值是多少?如图,在一个直角三角形的内部作一个矩形ABCD,其中AB和AD分别在两直角边上.

2、ABCD┐MN40m30mxmbm认真分析,仔细思考(1)如果设矩形的一边AD=xcm,那么AB边的长度如何表示?(2)设矩形的面积为ym2,当x取何值时,y的值最大?最大值是多少?何时面积最大如图,在一个直角三角形的内部作一个矩形ABCD,其中AB和AD分别在两直角边上.40cm30cmbcmxcmABCD┐MN变一变,议一议(1)设矩形的一边BC=xm,那么AB边的长度如何表示?(2)设矩形的面积为ym2,当x取何值时,y的值最大?最大值是多少?如图,在一个直角三角形的内部作一个矩形ABCD,其中点A和点D分别在两直角边上

3、,BC在斜边上.ABCD┐MNP40m30mxmbmHG┛┛变一变,议一议何时窗户通过的光线最多某建筑物的窗户如图所示,它的上半部是半圆,下半部是矩形,制造窗框的材料总长(图中所有的黑线的长度和)为15m.当x等于多少时,窗户通过的光线最多(结果精确到0.01m)?此时,窗户的面积是多少?xxy做一做1.理解问题;“二次函数应用”的思路回顾上一节“最大利润”和本节“最大面积”解决问题的过程,你能总结一下解决此类问题的基本思路吗?与同伴交流.2.分析问题中的变量和常量,以及它们之间的关系;3.用数学的方式表示出它们之间的关系;4

4、.运用数学知识求解;5.检验结果的合理性,给出问题的解答.题后反思,归纳小结用48米长的竹篱笆围建一矩形养鸡场,养鸡场一面用砖砌成,另三面用竹篱笆围成,并且在与砖墙相对的一面开2米宽的门(不用篱笆),问养鸡场的边长为多少米时,养鸡场占地面积最大?最大面积是多少?拓展提高2mym2xmxm正方形ABCD边长5cm,等腰三角形PQR中,PQ=PR=5cm,QR=8cm,点D、C、Q、R在同一直线l上,当C、Q两点重合时,等腰△PQR以1cm/s的速度沿直线l向左方向开始匀速运动,ts后正方形与等腰三角形重合部分面积为Scm2,解答

5、下列问题:(1)当t=3s时,求S的值;(2)当t=3s时,求S的值;(3)当5s≤t≤8s时,求S与t的函数关系式,并求S的最大值。MABCDPQRl合作分析,共同探究本节课我们进一步学习了用二次函数知识解决 最大面积问题,增强了应用数学知识的意识, 获得了利用数学方法解决实际问题的经验, 并进一步感受了数学建模思想和数学知识的 应用价值.课堂小结通过前面活动,这节课你学到了什么?

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。