数学北师大版九年级下册2.4二次函数的应用2

数学北师大版九年级下册2.4二次函数的应用2

ID:39800279

大小:27.43 KB

页数:3页

时间:2019-07-11

数学北师大版九年级下册2.4二次函数的应用2_第1页
数学北师大版九年级下册2.4二次函数的应用2_第2页
数学北师大版九年级下册2.4二次函数的应用2_第3页
资源描述:

《数学北师大版九年级下册2.4二次函数的应用2》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、2.4二次函数的应用2一、教学目标(一)知识与技能1、经历探索T恤衫销售中最大利润等问题的过程,体会二次函数是一类最优化问题的数学模型,并感受数学的应用价值。2、能够分析和表示实际问题中变量之间的二次函数关系,并运用二次函数的知识求出实际问题的最大(小)值,发展解决问题的能力。(二)过程与方法经历销售中最大利润问题的探究过程,让学生认识数学与人类生活的密切联系及对人类历史发展的作用,发展学生运用数学知识解决实际问题的能力。(三)情感态度与价值观1、体会数学与人类社会的密切联系,了解数学的价值。增进对数学的理解和学好数学的信心。2、

2、认识到数学是解决实际问题和进行交流的重要工具,了解数学对促进社会进步和发展人类理性精神的作用。教学重点:能够分析和表示实际问题中变量之间的二次函数关系,并运用二次函数的知识求出实际问题的最值教学难点:能够分析和表示实际问题中变量之间的二次函数关系,并运用二次函数的知识求出实际问题的最值三、教学过程第一环节复习回顾活动内容:1.复习二次函数y=ax2+bx+c的相关性质:顶点坐标、对称轴、最值等。2.复习这节课所要用的其他相关知识:利润=售价-进价,总利润=每件利润×销售额第二环节创设问题情境,引入新课活动内容:(有关利润的问题)某

3、商店经营T恤衫,已知成批购进时单价是2.5元。根据市场调查,销售量与销售单价满足如下关系:在一段时间内,单价是13.5元时,销售量是500件,而单价每降低1元,就可以多售出200件。请你帮助分析,销售单价是多少时,可以获利最多?设销售单价为x(x≤13.5)元,那么(1)销售量可以表示为;(2)销售额可以表示为;(3)所获利润可以表示为; (4)当销售单价是元时,可以获得最大利润,最大利润是.这是一个有实际意义的问题,要想解决它,就必须寻找出问题本身所隐含的一些关系,并把这些关系用数学的语言表示出来。设销售单价为x元,则与原先的单

4、价相比,降低了(13.5-x)元,而每降低1元,可多售出200件,降低了(13.5-x)元,则可多售出200(13.5-x)件,因此共售出500+200(13.5-x)件,若所获利润用y(元)表示,则y=(x-2.5)[500+200(13.5-x)]。经过分析之后,上面的4个问题就可以解决了。(1)销售量可以表示为500+200(13.5-x)=3200—200x。(2)销售额可以表示为x(3200-200x)=3200x-200x2。(3)所获利润可以表示为(3200x-200x2)-2.5(3200-200x)=-200x2

5、+3700x-8000。(4)设总利润为y元,则y=-200x2+3700x-8000=-200(x-.∵-200<0∴抛物线有最高点,函数有最大值。当x==9.25元时,y最大==9112.5元.即当销售单价是9.25元时,可以获得最大利润,最大利润是9112.5元.第三环节巩固练习活动内容:解决本章伊始,提出的“橙子树问题”(1.验证猜测;2.进一步分析)1.本章一开始的“种多少棵橙子树”的问题,我们得到了表示增种橙子树的数量x(棵)与橙子总产量y(个)的函数关系是:二次函数表达式y=(600-5x)(100+x)=-5x2+

6、100x+60000。当时曾经利用列表的方法得到一个猜测,现在可以验证当初的猜测是否正确?你是怎么做的?与同伴进行交流。实际教学效果:大多数学生可以利用二次函数的顶点式解决问题。y=-5x2+100x+60000=-5(x2-20x+100-100)+60000=-5(x-10)2+60500。当x=10时,y最大=60500。2.议一议:(要求学生画出二次函数的图象,并根据图象回答问题)(1)利用函数图象描述橙子的总产量与增种橙子树的棵数之间的关系。(2)增种多少棵橙子树,可以使橙子的总产量在60400个以上?第四环节实践应用活

7、动内容:某商店购进一批单价为20元的日用品,如果以单价30元销售,那么半个月内可以售出400件。根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少20件。如何提高售价,才能在半个月内获得最大利润?解:设销售单价为;元,销售利润为y元,则y=(x-20)[400-20(x-30)]=-20x2+1400x-20000=-20(x-35)2+4500。所以当x=35元,即销售单价提高5元时,可在半月内获得最大利润4500元.第五环节课堂小结本节课经历了探索T恤衫销售中最大利润等问题的过程,体会了二次函数

8、是一类最优化问题的数学模型,并感受了数学的应用价值。学会了分析和表示实际问题中变量之间的二次函数关系,并运用二次函数的知识求出实际问题中的最大(小)值,提高解决问题的能力。第六环节课后作业习题2.9

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。