资源描述:
《九年级数学下册 第2章 二次函数 2.4 二次函数的应用 2.4.2 二次函数的应用教案 北师大版》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、2.4.2二次函数的应用一、教学目标1.经历探索T恤衫销售过程中最大利润等问题的过程,体会二次函数是一类最优化问题的数学模型,感受数学的应用价值.2.掌握实际问题中变量之间的二次函数关系,并运用二次函数的知识求出实际问题的最大值、最小值.二、课时安排1课时三、教学重点运用二次函数的知识求出实际问题的最大值、最小值.四、教学难点运用二次函数的知识求出实际问题的最大值、最小值.五、教学过程(一)导入新课某超市有一种商品,进价为2元,据市场调查,销售单价是13元时,平均每天销售量是50件,而销售价每降低1元,平均每天就可以多售出10件.
2、若设降价后售价为x元,每天利润为y元,则y与x之间的函数关系是怎样的?(二)讲授新课活动1:小组合作二次函数y=a(x-h)2+k(a0),顶点坐标为(h,k),则①当a>0时,y有最小值k;②当a<0时,y有最大值k【探究】某商店经营T恤衫,已知成批购进时单价是2.5元.根据市场调查,销售量与销售单价满足如下关系:在一段时间内,单价是13.5元时,销售量是500件,而单价每降低1元,就可以多售出200件.请你帮助分析,销售单价是多少时,可以获利最多?【解析】设销售单价为x(x≤13.5)元,那么销售量可以表示为:件;每件T恤衫的
3、利润为:元;所获总利润可以表示为:元;即y=-200x2+3700x-8000=-200(x-9.25)2+9112.5∴当销售单价为元时,可以获得最大利润,最大利润是元.活动2:探究归纳先将实际问题转化为数学问题,再将所求的问题用二次函数关系式表达出来,然后利用顶点坐标公式或者配方法求出最值,有时必须考虑其自变量的取值范围,根据图象求出最值.(三)重难点精讲例题2(武汉·中考)某宾馆有50个房间供游客住宿,当每个房间的房价为每天180元时,房间会全部住满.当每个房间每天的房价每增加10元时,就会有一个房间空闲.宾馆需对游客居住的
4、每个房间每天支出20元的各种费用.根据规定,每个房间每天的房价不得高于340元.设每个房间的房价每天增加x元(x为10的整数倍).(1)设一天订住的房间数为y,直接写出y与x的函数关系式及自变量x的取值范围.(2)设宾馆一天的利润为w元,求w与x的函数关系式.(3)一天订住多少个房间时,宾馆的利润最大?最大利润是多少元?【解析】(1)y=50-;(2)w=(180+x-20)y=(180+x-20)(50-)=(3)因为w=所以x==170时,w有最大值,而170>160,故由函数性质知x=160时,利润最大,此时订房数y=50-
5、=34,此时的利润为10880元.例题3(青海·中考)某水果批发商场经销一种水果,如果每千克盈利5元,每天可售出200千克,经市场调查发现,在进价不变的情况下,若每千克涨价1元,销售量将减少10千克.(1)现该商场要保证每天盈利1500元,同时又要顾客得到实惠,那么每千克应涨价多少元?(2)若该商场单纯从经济利益角度考虑,这种水果每千克涨价多少元,能使商场获利最多?【解析】(1)设每千克应涨价x元,列方程得:(5+x)(200-10x)=1500,解得:x1=10,x2=5.因为要顾客得到实惠,5<10所以x=5.答:每千克应涨价
6、5元.(2)设商场每天获得的利润为y元,则根据题意,得y=(x+5)(200-10x)=-10x2+150x+1000,当x=时,y有最大值.因此,这种水果每千克涨价7.5元,能使商场获利最多(四)归纳小结“何时获得最大利润”问题解决的基本思路.1.根据实际问题列出二次函数关系式.2.根据二次函数的最值问题求出最大利润(五)随堂检测1.(株洲·中考)某广场有一喷水池,水从地面喷出,如图,以水平地面为轴,出水点为原点,建立平面直角坐标系,水在空中划出的曲线是抛物线y=-(x-2)2+4(单位:米)的一部分,则水喷出的最大高度是()A
7、.4米B.3米C.2米D.1米2.(德州·中考)为迎接第四届世界太阳城大会,德州市把主要路段路灯更换为太阳能路灯.已知太阳能路灯售价为5000元/个,目前两个商家有此产品.甲商家用如下方法促销:若购买路灯不超过100个,按原价付款;若一次性购买100个以上,则购买的个数每增加一个,其价格减少10元,但太阳能路灯的售价不得低于3500元/个.乙商家一律按原价的80℅销售.现购买太阳能路灯x个,如果全部在甲商家购买,则所需金额为y1元;如果全部在乙商家购买,则所需金额为y2元.(1)分别求出y1,y2与x之间的函数关系式.(2)若市政
8、府投资140万元,最多能购买多少个太阳能路灯?3.桃河公园要建造圆形喷水池.在水池中央垂直于水面处安装一个柱子OA,O恰在水面中心,OA=1.25m.由柱子顶端A处的喷头向外喷水,水流在各个方向沿形状相同的抛物线落下,为使水流形状较为漂亮,要求设计