资源描述:
《数学北师大版九年级下册2.3 确定二次函数的表达式(1).ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第二章二次函数2.3确定二次函数的表达式(第1课时)1.二次函数表达式的一般形式是什么?二次函数表达式的顶点式是什么?y=ax²+bx+c(a,b,c为常数,a≠0)y=a(x-h)2+k(a≠0)复习引入13.我们在用待定系数法确定一次函数y=kx+b(k,b为常数,k≠0)的关系式时,通常需要个独立的条件.确定反比例函数(k≠0)关系式时,通常需要个条件.21复习引入1如果确定二次函数y=ax2+bx+c(a,b,c为常数,a≠0)的关系式时,通常又需要几个条件?学习目标:知识与技能:能够根
2、据二次函数的图像和性质建立合适的直角坐标系,确定函数关系式,并会根据条件利用待定系数法求二次函数的表达式。过程与方法:经历确定适当的直角坐标系以及根据点的坐标确定二次函数表达式的思维过程。情感态度与价值观:能把实际问题抽象为数学问题,也能把所学知识运用于实践,培养学生积极参与的意识,加深学生在生活中学数学,将数学知识服务于生活的学习理念,养成学生善于主动学习、乐于合作交流、学会总结提升的学习习惯,激发和调动学生学习的积极性和主动性,培养数学的应用意识.如图2-7是一名学生推铅球时,铅球行进高度y
3、(m)与水平距离x(m)的图象,你能求出其表达式吗?初步探究2确定二次函数的表达式需要几个条件?与同伴或小组交流。确定二次函数的关系式y=ax²+bx+c(a,b,c为常数,a≠0),通常需要3个条件;当知道顶点坐标(h,k)和图象上的另一点坐标两个条件时,用顶点式y=a(x-h)2+k可以确定二次函数的关系式.例1已知二次函数y=ax2+c的图象经过点(2,3)和(-1,-3),求出这个二次函数的表达式.初步探究2解:将点(2,3)和(-1,-3)分别代入二次函数y=ax2+c中,得3=4a+
4、c,-3=a+c,解这个方程组,得a=2,c=-5.∴所求二次函数表达式为:y=2x2-5.已知二次函数的图象与y轴交点的纵坐标为1,且经过点(2,5)和(-2,13),求这个二次函数的表达式.分析:设二次函数式为y=ax²+bx+c,确定这个二次函数需要三个条件来确定系数a,b,c的值,由于这个二次函数图象与y轴交点的纵坐标为1,所以c=1,因此可设y=ax²+bx+1把已知的两点代入关系式求出a,b的值即可。深入探究3已知二次函数的图象与y轴交点的纵坐标为1,且经过点(2,5)和(-2,13
5、),求这个二次函数的表达式。分析:设二次函数式为y=ax²+bx+c,确定这个二次函数需要三个条件来确定系数a,b,c的值,由于这个二次函数图象与y轴交点的纵坐标为1,所以过点(0,1),因此可把三点坐标代入关系式,求出a,b,c的值即可。深入探究3解法2在什么情况下,一个二次函数只知道其中两点就可以确定它的表达式?小结:1.用顶点式y=a(x-h)2+k时,知道顶点(h,k)和图象上的另一点坐标,就可以确定这个二次函数的表达式。2.用一般式y=ax²+bx+c确定二次函数时,如果系数a,b,c
6、中有两个是未知的,知道图象上两个点的坐标,也可以确定这个二次函数的关系式.1.已知二次函数的图象顶点是(-1,1),且经过点(1,-3),求这个二次函数的表达式.2.已知二次函数y=x²+bx+c的图象经过点(1,1)与(2,3)两点。求这个二次函数的表达式.3.已知二次函数图象与x轴交点的横坐标为-2和1,且经过点(0,1),求这个二次函数的表达式.答案反馈练习41.通过上述问题的解决,您能体会到求二次函数表达式采用的一般方法是什么?(待定系数法)你能否总结出上述解题的一般步骤?(1)设二次函
7、数的表达式;(2)根据图象或已知条件列方程(或方程组);(3)解方程(或方程组),求出待定系数;(4)答:写出二次函数的表达式.总结提升5用待定系数法确定二次函数关系式的一般步骤和运用的思想方法.总结提升52.在什么情况下,一个二次函数只知道其中两点就可以确定它的表达式?课本习题2.6第1,2,3题;布置作业6