欢迎来到天天文库
浏览记录
ID:48610595
大小:1.56 MB
页数:34页
时间:2020-01-23
《多边形的外角和.pptx》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第十一章三角形八年级数学人教版·上册11.3.2多边形的内角和授课人:XXXX教学目标1.能通过不同方法探索多边形的内角和与外角和公式.(重点)2.学会运用多边形的内角和与外角和公式解决问题.(难点)新课导入法国的建筑事务所atelierd将协调坚固的蜂窝与人类天马行空的想象力结合,创造了这个“abeillesbeepavilion”.情景引入思考:你知道正六边形的内角和是多少吗?新课导入问题2你知道长方形和正方形的内角和是多少度?问题1三角形内角和是多少度?三角形内角和是180°.都是360°.问题3猜想任意四边形的内角和是多少度?一、多边形的内角和新课导入
2、猜想:四边形ABCD的内角和是360°.问题4你能用以前学过的知识说明一下你的结论吗?猜想与证明方法1:如图,连接AC,所以四边形被分为两个三角形,所以四边形ABCD内角和为180°×2=360°.ABCD新知探究ABCDE方法2:如图,在BC边上任取一点E,连接AE,DE,所以该四边形被分成三个三角形,所以四边形ABCD的内角和为180°×3-(∠AEB+∠AED+∠CED)=180°×3-180°=360°.新知探究方法3:如图,在四边形ABCD内部取一点E,连接AE,BE,CE,DE,把四边形分成四个三角形:△ABE,△ADE,△CDE,△CBE.所以四
3、边形ABCD内角和为180°×4-(∠AEB+∠AED+∠CED+∠CEB)=180°×4-360°=360°.ABCDE新知探究ABCDP方法4:如图,在四边形外任取一点P,连接PA,PB,PC,PD将四边形变成有一个公共顶点的四个三角形.所以四边形ABCD内角和为180°×3-180°=360°.这四种方法都运用了转化思想,把四边形分割成三角形,转化到已经学了的三角形内角和求解.结论:四边形的内角和为360°.新知探究例1:如果一个四边形的一组对角互补,那么另一组对角有什么关系?试说明理由.解:如图,四边形ABCD中,∠A+∠C=180°.∠A+∠B+∠C
4、+∠D=(4-2)×180°=360°,因为∠B+∠D=360°-(∠A+∠C)=360°-180°=180°.所以ABCD如果一个四边形的一组对角互补,那么另一组对角互补.典例精析新知探究【变式题】如图,在四边形ABCD中,∠A与∠C互补,BE平分∠ABC,DF平分∠ADC,若BE∥DF,求证:△DCF为直角三角形.证明:∵在四边形ABCD中,∠A与∠C互补,∴∠ABC+∠ADC=180°.∵BE平分∠ABC,DF平分∠ADC,∴∠CDF+∠EBF=90°.∵BE∥DF,∴∠EBF=∠CFD,∴∠CDF+∠CFD=90°.故△DCF为直角三角形.运用了整体思
5、想新知探究ACDEBABCDEF问题5你能仿照求四边形内角和的方法,选一种方法求五边形和六边形内角和吗?内角和为180°×3=540°.内角和为180°×4=720°.新知探究n边形六边形五边形四边形三角形多边形内角和分割出三角形的个数从多边形的一顶点引出的对角线条数图形边数······0n-31231234n-2(n-2)·180º1×180º=180º2×180º=360º3×180º=540º4×180º=720º························由特殊到一般新知探究分割多边形三角形分割点与多边形的位置关系顶点边上内部外部转化思想总结归纳多
6、边形的内角和公式n边形内角和等于(n-2)×180°.新知探究例2一个多边形的内角和比四边形的内角和多720°,并且这个多边形的各内角都相等,这个多边形的每个内角是多少度?解:设这个多边形边数为n,则(n-2)•180=360+720,解得n=8.∵这个多边形的每个内角都相等,(8-2)×180°=1080°,∴它每个内角的度数为1080°÷8=135°.典例精析新知探究例3已知n边形的内角和θ=(n-2)×180°.(1)甲同学说,θ能取360°;而乙同学说,θ也能取630°.甲、乙的说法对吗?若对,求出边数n.若不对,说明理由;解:∵360°÷180°=2
7、,630°÷180°=3......90°,∴甲的说法对,乙的说法不对,360°÷180°+2=4.故甲同学说的边数n是4;新知探究(2)若n边形变为(n+x)边形,发现内角和增加了360°,用列方程的方法确定x.解:依题意有(n+x-2)×180°-(n-2)×180°=360°,解得x=2.故x的值是2.新知探究【变式题】一个同学在进行多边形的内角和计算时,求得内角和为1125°,当他发现错了以后,重新检查,发现少算了一个内角,问这个内角是多少度?他求的是几边形的内角和?解:设此多边形的内角和为x,则有1125°<x<1125°+180°,即180°×6+
8、45°<x<180°×7+45°,因为
此文档下载收益归作者所有