教学设计勾股定理.doc

教学设计勾股定理.doc

ID:48597339

大小:192.50 KB

页数:10页

时间:2020-02-26

教学设计勾股定理.doc_第1页
教学设计勾股定理.doc_第2页
教学设计勾股定理.doc_第3页
教学设计勾股定理.doc_第4页
教学设计勾股定理.doc_第5页
资源描述:

《教学设计勾股定理.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、教学设计题目勾股定理总课时8学校兰河一中教者孙岩年级八年级学科数学设计来源集体备课教学时间2010年月日—月日教材分析勾股定理是九年制义务教育课程标准实验教科书八年级下册第十八章的内容。勾股定理是几何中几个重要定理之一,它揭示的是直角三角形中三边的数量关系。它在数学的发展中起过重要的作用,在现时世界中也有着广泛的作用。学生通过对勾股定理的学习,可以在原有的基础上对直角三角形有进一步的认识和理解。学情分析针对八年级学生的知识结构、心理特征及学生的实际情况,可选择引导探索法,由浅入深,由特殊到一般地提出问题。引导学生自主探索,合作交流,这种教学理念反映了时代精神,有利于提高

2、学生的思维能力,能有效地激发学生的思维积极性,借此培养学生动手、动脑、动口的能力,使学生真正成为学习的主体。教学目标(一)知识与技能1、体验勾股定理的探索过程,会运用勾股定理解决简单的问题。2、会运用勾股定理的逆定理判定直角三角形。3、通过具体的例子,了解定理的含义;了解逆命题、逆定理概念;知道原命题成立其逆命题不一定成立。(二)过程与方法1、让学生经历用面积法探索勾股定理的过程,体会数形结合的思想,渗透观察、归纳、猜想、验证的数学方法,体验从特殊到一般的逻辑推理过程。(三)情感态度与价值观1、通过了解勾股定理的历史,激发学生热爱祖国,热爱祖国悠久文化的思想,激励学生发

3、奋学习。2、让学生体验自己努力得到结论的成就感,体验数学充满了探索和创造,感受数学之美,探究之趣。重点勾股定理、逆定理及运用难点勾股定理及逆定理的探索过程课前准备1.多媒体课件2、网络资源教学流程分课时环节与时间教师活动学生活动△设计意图◇资源准备□评价○反思第一课时活动1欣赏图片了解历史4分钟2002年在北京召开了第24届国际数学家大会,它是最高水平的全球性数学科学学术会议,被誉为数学界的“奥运会”.这就是本届大会的会徽的图案.(1)你见过这个图案吗?(2)你听说过“勾股定理”吗?学生观察图片发表见解◇教师演示课件△从现实生活中提出“赵爽弦图”,为学生能够积极主动地投

4、入到探索活动创设情境,激发学生学习热情,同时为探索勾股定理提供背景材料.活动2探索勾股定 理20分钟毕达哥拉斯是古希腊著名的数学家.相传在2500年以前,他在朋友家做客时,发现朋友家用地砖铺成的地面反映了直角三角形的某种特性.(1)现在请你也观察一下,你能有什么发现吗?(2)等腰直角三角形是特殊的直角三角形,一般的直角三角形是否也有这样的特点呢?(3)你有新的结论吗?在独立探究的基础上,学生分组交流.△渗透从特殊到一般的数学思想.为学生提供参与数学活动的时间和空间,发挥学生的主体作用;培养学生的类比迁移能力及探索问题的能力,使学生在相互欣赏、争辩、互助中得到提高.◇教师

5、演示课件活动3证明勾股定 理17分钟是不是所有的直角三角形都有这样的特点呢?这就需要我们对一个一般的直角三角形进行证明.到目前为止,对这个命题的证明方法已有几百种之多.下面,我们就来看一看我国数学家赵爽是怎样证明这个命题的.(1)以直角三角形ABC的两条直角边a、b为边作两个正方形.你能通过剪、拼把它拼成弦图的样子吗?(2)面积分别怎样表示?它们有什么关系呢?学生在独立思考的基础上以小组为单位,动手拼接.◇教师演示课件△通过拼图活动,调动学生思维的积极性,为学生提供从事数学活动的机会,建立初步的空间观念,发展形象思维活动4总结反思布置作业4分钟1、本节课你有哪些收获?2

6、、思想方法归纳?3、作业:略学生谈体会.△通过小结为学生创造交流的空间,调动学生的积极性给学生留有继续学习的空间和兴趣.板书设计反思:本节课涉及了大量的有关勾股定理的背景知识,学生可以感受到勾股定理所蕴含的浓郁的数学文化。教学中应聆听学生发言,尊重学生发展。引导深挖细究,体现过程方法。突出过程评价,注重情感体验。勾股定理                         定理:如果直角三角形的两直角边长分别为a,b,斜边为c,那么教学流程分课时环节与时间教师活动学生活动△设计意图◇资源准备□评价○反思第二课时创设情境引入新课     4分钟我国古代3000多年前有一个叫商

7、高的人,他说:“把一根直尺折成直角,两段连结得一直角三角形,勾广三,股修四,弦隅五。”这句话意思是说一个直角三角形较短直角边(勾)的长是3,长的直角边(股)的长是4,那么斜边(弦)的长是5。你是否发现32+42与52的关系,即32+42=52,那么就有勾2+股2=弦2。对于任意的直角三角形也有这个性质吗?学生思考、交流◇教师演示课件△问题是思维的起点,通过问题激发学生好奇、探究和主动学习的欲望.合作交流探究新知20分钟例1(补充)已知:在△ABC中,∠C=90°,∠A、∠B、∠C的对边为a、b、c。求证:a2+b2=c2。分析:⑴让学生准

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。