欢迎来到天天文库
浏览记录
ID:48561166
大小:33.50 KB
页数:5页
时间:2020-02-26
《等腰三角形的性质教案.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、等腰三角形的性质 教学目标(1)知识目标:1、掌握等腰三角形的两底角相等,底边上的高、中线及顶角平分线三线合一的性质,并能运用它们进行有关的论证和计算。2、理解等腰三角形和等边三角形性质定理之间的联系。(2)能力目标:1、定理的引入培养学生对命题的抽象概括能力,加强发散思维的训练。2、定理的证明培养大胆创新、敢于求异、勇于探索的精神和能力,形成良好的思维品质。3、定理的应用,培养学生进行独立思考,提高独立解决问题的能力。(3)情感目标:在教学过程中,引导学生进行规律的再发现,激发学生的审美情感,与现实生活有关的实际问题使学生认识到数学对于外部世界的完善与
2、和谐,使他们有效地获取真知,发展理性。教学重点等腰三角形的性质定理及其证明。教学难点用文字语言叙述的几何命题的证明及辅助线的添加。教学过程 一、前置诊断,开辟道路1、什么样的三角形叫做等腰三角形?2、指出等腰三角形的腰、底边、顶角、底角。 首先教师提问了解前置知识掌握情况。 动脑思考、口答。二、构设悬念,创设情境1、一般三角形有哪些性质?2、等腰三角形除具有一般三角形的性质外,还有那些特殊性质? 把问题作为教学的出发点,激发学生的学习兴趣。 问题2给学生留下悬念。 三、目标导向,自然引入本节课我们一起研究——等腰三角形的性质。 板书课题了解本节课的学习内
3、容。 四、设问质疑,探究尝试请同学们拿出准备好的等腰三角形,与教师一起按照要求,把两腰叠在一起。[问题]通过观察,你发现了什么结论?[结论]等腰三角形的两个底角相等。 板书学生发现的结论。 [问题]可由学生从多种途径思考,纵横联想所学知识方法,为命题的证明打下基础。 [辨疑]由观察发现的命题不一定是真命题,需要证明,怎样证明?[问题]1、此命题的题设、结论分别是什么?2、怎样写出已知、求证?3、怎样证明?[电脑演示1][投影学生证明过程,并由其讲述]从而引出定理等腰三角形的两个底角相等(简写成“等边对等角”) 通过电脑演示,引导学生全面观察,联想,突破引
4、辅助线的难关,并向学生渗透转化的数学思想。引出学生探究心理,迅速集中注意力,使其带着浓厚的兴趣开始积极探索思考。 继续观察图形[问题]1、指出全等三角形中还有哪些对应边、对应角相等?2、等腰三角形的顶角的平分线又有什么性质?设问、质疑小组讨论,归纳总结,培养学生概括数学材料的能力。 教学内容 教师活动 学生活动[辨疑]一般三角形是否具有这一性质呢?[电脑演示2]从而引出推论1等腰三角形顶角的平分线平分底边,并且垂直于底边.“三线合一”性质等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。[填空]根据等腰三角形性质定理的推论,在△ABC中(1)∵A
5、B=AC,AD⊥BC,∴∠_=∠_,_=_;(2)∵AB=AC,AD是中线,∴∠_=∠_,_⊥_;(3)∵AB=AC,AD是角平分线,∴_⊥_,_=_。 通过电脑演示,引出推论1,并引入[填空]、强调推论1的运用方法。 电脑演示给学生对推抡1留下深刻印象,并通过[填空]了解推论1的运用方法。 五、变式训练,巩固提高达标练习一A组:根据等腰三角的形性质定理(1)等腰直角三角形的每一个锐角都等于多少度?(2)若等腰三角形的顶角为40°,则它的底角为多少度?(3)若等腰三角形的一个底角为40°,则它的顶角为多少度?B组:根据等腰三角形的性质定理(1)若等腰三角
6、形的一个内角为40°,则它的其余各角为多少度?(2)若等腰三角形的一个内角为120°,则它的其余各角为多少度?(3)等边三角形的三个内角有什么关系?各等于多少度?从而引出推论2等边三角形的各角都相等,并且每一个角都等于60°.题目设计遵循由易到难的原则,引导学生拾阶而上。沟通等腰三角形的性质定理和三角形内角和定理的联系,并引出推论2。A组口答练习B组讨论后回答。掌握等腰三角形性质定理的应用,训练学生的类比思维,让学生获得从问题中探索共同的属性和规律的思维能力。 教学内容 教师活动 学生活动 达标练习二A组:等腰三角形斜边上的高把直角分成两个角,求这两个角
7、的度数。B组:已知:如图,房屋的顶角 ∠BAC=100°。求顶架上∠B、∠C、∠BAD、∠CAD的度数。理论联系实际,充分体现数学解决实际问题的作用,培养学生的应用意识,提高数学修养。 A组口答B组独立解答.加深理解定理及推论1,能初步灵活地运用它们进行计算和论证。 布置作业:1、看书:P1——P32、课本P5想一想 教案设计说明本节课是在学生掌握了一般三角形基础知识和初步推论证明的基础上进行学习的,担负着训练学生会分析证明思路的任务,等腰三角形两底角相等的性质是今后论证两角相等的依据之一,等腰三角形底边上的三条主要线段重合的性质是今后论证两条线段
8、相等、两个角相等及两条直线垂直的重要依据。因此设计时,我分别从几个方面作了精心策
此文档下载收益归作者所有