欢迎来到天天文库
浏览记录
ID:48558427
大小:111.50 KB
页数:2页
时间:2020-02-26
《北师大版数学初一上册有理数加法.3.1有理数的加法(1).doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、课题:有理数的加法(1)【学习目标】:1、理解有理数加法意义,掌握有理数加法法则,会正确进行有理数加法运算;2、会利用有理数加法运算解决简单的实际问题;【学情分析】:七年级学生的特点是模仿力强,喜欢动手,思维活跃,但思维往往依赖于直观具体的形象,而初一学生的形象思维大于抽象思维,注意力不能持久等年龄特点,同时考虑学生的认知方式、思维水平和学习能力的差异,让不同层次的学生都能主动参与并都能得到充分的发展。在小学就为学生自主探究,动手实验,讨论交流、尝试证明做好了准备,突出以学生为主体的探索性学习活动和因材施教原则,遵循知识产生过程,从特殊→一般→特殊,
2、将所学的知识用于实践中。【学习重点】:有理数加法法则【学习难点】:异号两数相加【教学过程】一、知识链接1、正有理数及0的加法运算,小学已经学过,然而实际问题中做加法运算的数有可能超出正数范围。例如,足球循环赛中,可以把进球数记为正数,失球数记为负数,它们的和叫做净胜球数。如果,红队进4个球,失2个球;蓝队进1个球,失1个球。于是红队的净胜球数为4+(-2),蓝队的净胜球数为1+(-1)。这里用到正数和负数的加法。那么,怎样计算4+(-2)下面我们一起借助数轴来讨论有理数的加法。二、自主探究1、借助数轴来讨论有理数的加法1)如果规定向东为正,向西为负,
3、那么一个人向东走4米,再向东走2米,两次共向东走了米,这个问题用算式表示就是:2)如果规定向东为正,向西为负,那么一个人向西走2米,再向西走4米,两次共向西走多少米?很明显,两次共向西走了米。这个问题用算式表示就是:如图所示:3)如果向西走2米,再向东走4米,那么两次运动后,这个人从起点向东走了米,写成算式就是这个问题用数轴表示如下图所示:4)利用数轴,求以下情况时这个人两次运动的结果:①先向东走3米,再向西走5米,这个人从起点向()走了()米;②先向东走5米,再向西走5米,这个人从起点向()走了()米;③先向西走5米,再向东走5米,这个人从起点向(
4、)走了()米。写出这三种情况运动结果的算式5)如果这个人第一秒向东(或向西)走5米,第二秒原地不动,两秒后这个人从起点向东(或向西)运动了米。写成算式就是2、师生归纳两个有理数相加的几种情况。3.你能从以上几个算式中发现有理数加法的运算法则吗?有理数加法法则(1)同号的两数相加,取的符号,并把相加。(2)绝对值不相等的异号两数相加,取的加数的符号,并用较大的绝对值较小的绝对值.互为相反数的两个数相加得;(3)一个数同0相加,仍得。4.新知应用例1计算(自己动动手吧!)(1)(-3)+(-9);(2)(-4.7)+3.9.例2(自己独立完成)【课堂练习
5、】:1.填空:(口答)(1)(-4)+(-6)=;(2)3+(-8)=;(4)7+(-7)=;(4)(-9)+1=;(5)(-6)+0=;(6)0+(-3)=;【要点归纳】:有理数加法法则:【拓展训练】:1.判断题:(1)两个负数的和一定是负数;(2)绝对值相等的两个数的和等于零;(3)若两个有理数相加时的和为负数,这两个有理数一定都是负数;(4)若两个有理数相加时的和为正数,这两个有理数一定都是正数。2.已知│a│=8,│b│=2;(1)当a、b同号时,求a+b的值;(2)当a、b异号时,求a+b的值。【总结反思】:
此文档下载收益归作者所有