数学人教版八年级上册最短路径-造桥选址.4课题学习-最短路径问题-造桥选址问题.ppt

数学人教版八年级上册最短路径-造桥选址.4课题学习-最短路径问题-造桥选址问题.ppt

ID:48544732

大小:893.50 KB

页数:29页

时间:2020-01-18

数学人教版八年级上册最短路径-造桥选址.4课题学习-最短路径问题-造桥选址问题.ppt_第1页
数学人教版八年级上册最短路径-造桥选址.4课题学习-最短路径问题-造桥选址问题.ppt_第2页
数学人教版八年级上册最短路径-造桥选址.4课题学习-最短路径问题-造桥选址问题.ppt_第3页
数学人教版八年级上册最短路径-造桥选址.4课题学习-最短路径问题-造桥选址问题.ppt_第4页
数学人教版八年级上册最短路径-造桥选址.4课题学习-最短路径问题-造桥选址问题.ppt_第5页
资源描述:

《数学人教版八年级上册最短路径-造桥选址.4课题学习-最短路径问题-造桥选址问题.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、八年级上册13.4课题学习最短路径问题13.4课题学习最短路径问题造桥选址问题造桥选址问题如图,A和B两地在一条河的两岸,现要在河上造一座桥MN.桥造在何处才能使从A到B的路径AMNB最短?(假定河的两岸是平行的直线,桥要与河垂直)BA如图假定任选位置造桥MN,连接AM和BN,从A到B的路径是AM+MN+BN,那么折线AMNB在什么情况下最短呢?aBAbMN由于河宽是固定的,因此当AM+NB最小时,AM+MN+NB最小.思维分析我们能否在不改变AM+MN+BN的前提下把桥转化到一侧呢?什么图形变换能帮助我们呢?思维火花各抒己见MNBA合作与交流把A或B分别向下或上平移一个桥长那么怎样确定

2、桥的位置呢?如图,沿垂直于河岸的方向平移A到A′,使AA′等于河宽,连接A′B交河岸于点N,在点N处造桥MN,此时路径AM+MN+BN最短.aBAbMNA'作法1:问题解决作法2:1.将点B沿垂直与河岸的方向平移一个河宽到E,2.连接AE交河对岸与点M,则点M为建桥的位置,MN为所建的桥。A·BMNECD另任意造桥M′N′,连接AM′、BN′、A′N′.由平移性质可知,AM=A′N,AM′=A′N′,AA′=MN=M′N′.∴AM+MN+BN=AA′+A′B,AM′+M′N′+BN′=AA′+A′N′+BN′.在△A′N′B中,由线段公理知A′N′+BN′>A′B,∴AM′+M′N′+B

3、N′>AM+MN+BN.证明:aBAbMNA'N′M′归纳抽象为数学问题用旧知解决新知联想旧知解决实际问题lABC问题延伸一如图,A和B两地之间有两条河,现要在两条河上各造一座桥MN和PQ.桥分别建在何处才能使从A到B的路径最短?(假定河的两岸是平行的直线,桥要与河岸垂直)思维分析如图,问题中所走总路径是AM+MN+NP+PQ+QB.桥MN和PQ在中间,且方向不能改变,仍无法直接利用“两点之间,线段最短”解决问题,只有利用平移变换转移到两侧或同一侧先走桥长.平移的方法有三种:两个桥长都平移到A点处;都平移到B点处;MN平移到A点处,PQ平移到B点处。思维方法一1、沿垂直于第一条河岸的方向

4、平移A点至A1使AA1=MN,此时问题转化为问题基本题型两点(A1、B点)和一条河建桥(PQ)2、利用基本问题的解决方法确定桥PQ:(1)再沿垂直于第二条河岸的方向平移A1至A2,使A1A2=PQ.(2)连接A2B交A2的对岸Q点,在点处建桥PQ.3、确定PQ的位置,也确定了BQ和PQ,此时问题可转化为由A点、P点和第一条河确定桥MN的位置.连接A1P交A1的对岸于N点,在N点处建桥MN.问题解决沿垂直于河岸方向依次把A点移到A1、A1移到A2,使AA1=MN,A1A2=PQ;连接A2B交于B点相邻河岸于Q点,建桥PQ;连接A1P交A1的对岸于N点,建桥MN;从A点到B点的最短路径为AM

5、+MN+NP+PQ+QB.思维方法二沿垂直于第一条河岸方向平移A点至A1点,沿垂直于第二条河岸方向平移B点至B1点,连接A1B1分别交A、B的对岸于N、P两点,建桥MN和PQ.最短路径AM+MN+NP+PQ+QB转化为AA1+A1B1+BB1.思维方法三沿垂直于河岸方向依次把B点平移至B1、B2,使BB1=PQ,B1B2=MN ;连接B2A交于A点相邻河岸于M点,建桥MN;连接B1N交B1的对岸于P点,建桥PQ;从A点到B点的最短路径为AM+MN+NP+MN+NP+PQ+QB转化为AB2+B2B1+B1B.问题延伸二如图,A和B两地之间有三条河,现要在两条河上各造一座桥MN、PQ和GH.

6、桥分别建在何处才能使从A到B的路径最短?(假定河的两岸是平行的直线,桥要与河岸垂直)思维分析如图,问题中所走总路径是AM+MN+NP+PQ+QG+GH+HB.桥MN、PQ和GH在中间,且方向不能改变,仍无法直接利用“两点之间,线段最短”解决问题,只有利用平移变换转移到两侧或同一侧先走桥长.平移的方法有四种:三个桥长都平移到A点处;都平移到B点处;MN、PQ平移到A点处;PQ、GH平移到B点处问题解决沿垂直于河岸方向依次把A点平移至A1、A2、A3,使AA1=MN,A1A2=PQ,A2A3=GH ;连接A3B交于B点相邻河岸于H点,建桥GH;连接A2G交第二河与G对岸的P点,建桥PQ;连接

7、A1P交第一条河与A的对岸于N点,建桥MN.此时从A到B点路径最短.沿垂直于河岸方向依次把A点平移至A1、A2、A3,使AA1=MN,A1A2=PQ,A2A3=GH ;连接A3B交于B点相邻河岸于H点,建桥GH;连接A2G交第二河与G对岸的P点,建桥PQ;连接A1P交第一条河与A的对岸于N点,建桥MN.此时从A到B点路径最短.问题解决沿垂直于河岸方向依次把A点平移至A1,使AA1=MN,平移B点至B1、B2,使BB1=GH,B1B2

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。