第26讲平面向量的数量积及应用.doc

第26讲平面向量的数量积及应用.doc

ID:48534452

大小:1.11 MB

页数:11页

时间:2020-02-25

第26讲平面向量的数量积及应用.doc_第1页
第26讲平面向量的数量积及应用.doc_第2页
第26讲平面向量的数量积及应用.doc_第3页
第26讲平面向量的数量积及应用.doc_第4页
第26讲平面向量的数量积及应用.doc_第5页
资源描述:

《第26讲平面向量的数量积及应用.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、2013年普通高考数学科一轮复习精品学案第26讲平面向量的数量积及应用一.课标要求:1.平面向量的数量积①通过物理中"功"等实例,理解平面向量数量积的含义及其物理意义;②体会平面向量的数量积与向量投影的关系;③掌握数量积的坐标表达式,会进行平面向量数量积的运算;④能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系。2.向量的应用经历用向量方法解决某些简单的平面几何问题、力学问题与其他一些实际问题的过程,体会向量是一种处理几何问题、物理问题等的工具,发展运算能力和解决实际问题的能力。二.命题走向本讲以选择题、填空题考

2、察本章的基本概念和性质,重点考察平面向量的数量积的概念及应用。重点体会向量为代数几何的结合体,此类题难度不大,分值5~9分。平面向量的综合问题是“新热点”题型,其形式为与直线、圆锥曲线、三角函数等联系,解决角度、垂直、共线等问题,以解答题为主。预测2013年高考:(1)一道选择题和填空题,重点考察平行、垂直关系的判定或夹角、长度问题;属于中档题目。(2)一道解答题,可能以三角、数列、解析几何为载体,考察向量的运算和性质;三.要点精讲1.向量的数量积(1)两个非零向量的夹角已知非零向量a与a,作=,=,则∠AOA=θ(0≤θ≤π)叫与

3、的夹角;说明:(1)当θ=0时,与同向;(2)当θ=π时,与反向;(3)当θ=时,与垂直,记⊥;(4)注意在两向量的夹角定义,两向量必须是同起点的,范围0°≤q≤180°。C(2)数量积的概念已知两个非零向量与,它们的夹角为,则·=︱︱·︱︱cos叫做与的数量积(或内积)。规定;向量的投影:︱︱cos=∈R,称为向量在方向上的投影。投影的绝对值称为射影;(3)数量积的几何意义:·等于的长度与在方向上的投影的乘积。(4)向量数量积的性质①向量的模与平方的关系:。②乘法公式成立;;③平面向量数量积的运算律交换律成立:;对实数的结合律成立

4、:;分配律成立:。④向量的夹角:cos==。当且仅当两个非零向量与同方向时,θ=00,当且仅当与反方向时θ=1800,同时与其它任何非零向量之间不谈夹角这一问题。(5)两个向量的数量积的坐标运算已知两个向量,则·=。(6)垂直:如果与的夹角为900则称与垂直,记作⊥。两个非零向量垂直的充要条件:⊥·=O,平面向量数量积的性质。(7)平面内两点间的距离公式设,则或。如果表示向量的有向线段的起点和终点的坐标分别为、,那么(平面内两点间的距离公式)。2.向量的应用(1)向量在几何中的应用;(2)向量在物理中的应用。四.典例解析题型1:数量

5、积的概念例1.判断下列各命题正确与否:(1);(2);(3)若,则;(4)若,则当且仅当时成立;(5)对任意向量都成立;(6)对任意向量,有。解析:(1)错;(2)对;(3)错;(4)错;(5)错;(6)对。点评:通过该题我们清楚了向量的数乘与数量积之间的区别于联系,重点清楚为零向量,而为零。例2.(1)若、、为任意向量,m∈R,则下列等式不一定成立的是()A.B.C.m()=m+mD.(2)设、、是任意的非零平面向量,且相互不共线,则①(·)-(·)=②

6、

7、-

8、

9、<

10、-

11、③(·)-(·)不与垂直④(3+2)(3-2)=9

12、

13、2-4

14、

15、

16、2中,是真命题的有()A.①②B.②③C.③④D.②④解析:(1)答案:D;因为,而;而方向与方向不一定同向。(2)答案:D①平面向量的数量积不满足结合律。故①假;②由向量的减法运算可知

17、

18、、

19、

20、、

21、-

22、恰为一个三角形的三条边长,由“两边之差小于第三边”,故②真;③因为[(·)-(·)]·=(·)·-(·)·=0,所以垂直.故③假;④(3+2)(3-2)=9··-4·=9

23、

24、2-4

25、

26、2成立。故④真。点评:本题考查平面向量的数量积及运算律,向量的数量积运算不满足结合律。题型2:向量的夹角例3.(1)已知向量、满足、,且,则与的夹

27、角为()A.B.C.D.(2)已知向量=(cos,sin),=(cos,sin),且,那么与的夹角的大小是。(3)已知两单位向量与的夹角为,若,试求与的夹角。(4)

28、

29、=1,

30、

31、=2,=+,且⊥,则向量与的夹角为()A.30°B.60°C.120°D.150°解析:(1)C;(2);(3)由题意,,且与的夹角为,所以,,,,同理可得。而,设为与的夹角,则。(4)C;设所求两向量的夹角为     即:所以点评:解决向量的夹角问题时要借助于公式,要掌握向量坐标形式的运算。向量的模的求法和向量间的乘法计算可见一斑。对于这个公式的变形应用应

32、该做到熟练,另外向量垂直(平行)的充要条件必需掌握。例4.(1)设平面向量、、的和。如果向量、、,满足,且顺时针旋转后与同向,其中,则()A.-++=B.-+=C.+-=D.++=(2)已知且关于的方程有实根,则与的夹角的取值范围是(

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。