欢迎来到天天文库
浏览记录
ID:48456000
大小:987.56 KB
页数:31页
时间:2020-02-01
《2020年高考数学(理)之纠错笔记专题07 不等式含答案.docx》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、专题07不等式易错点1忽视不等式隐含条件致误设,若1≤≤2,2≤≤4,则的取值范围是________.【错解】由得,①+②得:,②−①得:.由此得4≤=4a−2b≤11,所以的取值范围是[4,11].【错因分析】错误的主要原因是多次使用同向不等式的可加性而导致了的范围扩大.【试题解析】解法一:设=m+n(m、n为待定系数),则4a−2b=m(a−b)+n(a+b),即4a−2b=(m+n)a+(n−m)b,于是得,解得.∴=3+.又∵1≤≤2,2≤≤4,∴5≤3+≤10,即5≤≤10.解法二:由,得,∴=4a−2b=3+.又∵1≤
2、≤2,2≤≤4,∴5≤3+≤10,即5≤≤10.解法三:由题意,得,确定的平面区域如图中阴影部分所示.当=4a−2b过点时,取得最小值;当=4a−2b过点B(3,1)时,取得最大值4×3−2×1=10,∴5≤≤10.【答案】(1)此类问题的一般解法:先建立待求整体与已知范围的整体的关系,最后通过“一次性”使用不等式的运算求得整体范围;(2)求范围问题如果多次利用不等式的性质有可能扩大变量取值范围.1.已知实数,满足,,则的取值范围是A.B.C.D.【答案】B【解析】解:令,,,则又,因此,故选B.【名师点睛】本题考查了利用不等式的
3、性质,求不等式的取值范围问题,利用不等式同向可加性是解题的关键.易错点2忽略不等式性质成立的条件给出下列命题:①若,则;②若,则;③若且,则;④若,则.其中正确命题的序号是.【错解】①,又,则,故①正确;②当时,,故②不正确;③正确;④由知,∴,故,故④不正确.故填①③.【错因分析】①③忽略了不等式性质成立的条件;④中的推论显然不正确.【试题解析】①当ab<0时,不成立,故①不正确;②当c<0时,a>b不成立,故②不正确;③当a=1,b=−2,k=2时,命题不成立,故③不正确;④由a>b>0−a<−b<004、b⇒ac2>bc2;若无c≠0这个条件,a>b⇒ac2>bc2就是错误结论(当c=0时,取“=”).(3)“a>b>0⇒an>bn(n∈N*,n>1)”成立的条件是“n为大于1的自然数,a>b>0”,假如去掉“n为大于1的自然数”这个条件,取n=-1,a=35、,b=2,那么就会出现“3-1>2-1”的错误结论;假如去掉“b>0”这个条件,取a=3,b=-4,n=2,那么就会出现“32>(-4)2”的错误结论.2.若非零实数满足,则下列不等式成立的是A.B.C.D.【答案】C【解析】A,不一定小于0,所以该选项不一定成立;B,如果a<0,b<0时,不成立,所以该选项不一定成立;C,,所以,所以该不等式成立;D,不一定小于0,所以该选项不一定成立.故选:C【名师点睛】本题主要考查不等式性质和比较法比较实数的大小,意在考查学生对这些知识的理解掌握水平和分析推理能力.错点3忽略对二次项系数的讨6、论导致错误已知关于x的不等式mx2+mx+m-1<0恒成立,则m的取值范围为______________.【错解】由于不等式mx2+mx+m-1<0对一切实数x都成立,所以m<0且Δ=m2-4m(m-1)<0,解得m<0.故实数m的取值范围为(-∞,0).【错因分析】由于本题中x2的系数含有参数,且当m=0时不等式不是一元二次不等式,因此必须讨论m的值是否为0.而错解中直接默认不等式为一元二次不等式,从而采用判别式法处理导致漏解.【试题解析】由于不等式mx2+mx+m-1<0对一切实数x都成立,当m=0时,-1<0恒成立;当m≠07、时,易知m<0且Δ=m2-4m(m-1)<0,解得m<0.综上,实数m的取值范围为(-∞,0].【答案】(-∞,0]解一元二次不等式的一般步骤一化:把不等式变形为二次项系数大于零的标准形式.二判:计算对应方程的判别式.三求:求出对应的一元二次方程的根,或根据判别式说明方程有没有实根.四写:利用“大于取两边,小于取中间”写出不等式的解集.3.若不等式对实数恒成立,则实数的取值范围是A.或B.C.D.【答案】C【解析】由题得时,x<0,与已知不符,所以.当m≠0时,,所以.综合得m的取值范围为.故选C.【名师点睛】不等式的解是全体实数8、(或恒成立)的条件是当时,或当时,;不等式的解是全体实数(或恒成立)的条件是当时,或当时,.解不等式恒成立问题的技巧(1)对于一元二次不等式恒成立问题,恒大于0就是相应的二次函数的图象在给定的区间上全部在x轴上方,恒小于0就是相应的二次函数的图象在
4、b⇒ac2>bc2;若无c≠0这个条件,a>b⇒ac2>bc2就是错误结论(当c=0时,取“=”).(3)“a>b>0⇒an>bn(n∈N*,n>1)”成立的条件是“n为大于1的自然数,a>b>0”,假如去掉“n为大于1的自然数”这个条件,取n=-1,a=3
5、,b=2,那么就会出现“3-1>2-1”的错误结论;假如去掉“b>0”这个条件,取a=3,b=-4,n=2,那么就会出现“32>(-4)2”的错误结论.2.若非零实数满足,则下列不等式成立的是A.B.C.D.【答案】C【解析】A,不一定小于0,所以该选项不一定成立;B,如果a<0,b<0时,不成立,所以该选项不一定成立;C,,所以,所以该不等式成立;D,不一定小于0,所以该选项不一定成立.故选:C【名师点睛】本题主要考查不等式性质和比较法比较实数的大小,意在考查学生对这些知识的理解掌握水平和分析推理能力.错点3忽略对二次项系数的讨
6、论导致错误已知关于x的不等式mx2+mx+m-1<0恒成立,则m的取值范围为______________.【错解】由于不等式mx2+mx+m-1<0对一切实数x都成立,所以m<0且Δ=m2-4m(m-1)<0,解得m<0.故实数m的取值范围为(-∞,0).【错因分析】由于本题中x2的系数含有参数,且当m=0时不等式不是一元二次不等式,因此必须讨论m的值是否为0.而错解中直接默认不等式为一元二次不等式,从而采用判别式法处理导致漏解.【试题解析】由于不等式mx2+mx+m-1<0对一切实数x都成立,当m=0时,-1<0恒成立;当m≠0
7、时,易知m<0且Δ=m2-4m(m-1)<0,解得m<0.综上,实数m的取值范围为(-∞,0].【答案】(-∞,0]解一元二次不等式的一般步骤一化:把不等式变形为二次项系数大于零的标准形式.二判:计算对应方程的判别式.三求:求出对应的一元二次方程的根,或根据判别式说明方程有没有实根.四写:利用“大于取两边,小于取中间”写出不等式的解集.3.若不等式对实数恒成立,则实数的取值范围是A.或B.C.D.【答案】C【解析】由题得时,x<0,与已知不符,所以.当m≠0时,,所以.综合得m的取值范围为.故选C.【名师点睛】不等式的解是全体实数
8、(或恒成立)的条件是当时,或当时,;不等式的解是全体实数(或恒成立)的条件是当时,或当时,.解不等式恒成立问题的技巧(1)对于一元二次不等式恒成立问题,恒大于0就是相应的二次函数的图象在给定的区间上全部在x轴上方,恒小于0就是相应的二次函数的图象在
此文档下载收益归作者所有