2020年高考数学(理)之纠错笔记专题02 函数含答案.docx

2020年高考数学(理)之纠错笔记专题02 函数含答案.docx

ID:48456002

大小:1.25 MB

页数:34页

时间:2020-02-01

2020年高考数学(理)之纠错笔记专题02 函数含答案.docx_第1页
2020年高考数学(理)之纠错笔记专题02 函数含答案.docx_第2页
2020年高考数学(理)之纠错笔记专题02 函数含答案.docx_第3页
2020年高考数学(理)之纠错笔记专题02 函数含答案.docx_第4页
2020年高考数学(理)之纠错笔记专题02 函数含答案.docx_第5页
资源描述:

《2020年高考数学(理)之纠错笔记专题02 函数含答案.docx》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、专题02函数易错点1换元求解析式时忽略自变量范围的变化已知,求f(x)的解析式.【错解】令,则x=t2+1,所以f(t)=3-(t2+1)=2-t2,即有f(x)=2-x2.【错因分析】本例的错误是由于忽视了已知条件中“f”作用的对象“”是有范围限制的.利用换元法求函数的解析式时,一定要注意换元后新元的限制条件.【试题解析】令,则t≥0,且x=t2+1,所以f(t)=3-(t2+1)=2-t2(t≥0),即f(x)=2-x2(x≥0).【参考答案】f(x)=2-x2(x≥0).利用换元法求函数解析式时,一定要注意保持换元前后自变量的范围.1.已知,则A.B.C.D.【解析】

2、(换元法):令,则,所以,所以.故选A.【答案】A注意:用替换后,要注意的取值范围为,忽略了这一点,在求时就会出错.本题也可用配凑法,具体解析过程如下:,又,所以.故选A.易错点2分段函数的参数范围问题设函数,则满足的a的取值范围是A.B.[0,1]C.D.[1,+∞)【错解】当a<1时,f(a)=3a-1,此时f(f(a))=3(3a-1)-1=9a-4,,方程无解.当a≥1时,,此时,方程恒成立,故选D.【错因分析】对字母a的讨论不全而造成了漏解,实际上应先对3a-1与1的大小进行探讨,即参数a的分界点应该有2个,a=或a=1,所以在分段函数中若出现字母且其取值不明确时

3、,应先进行分类讨论.【试题解析】①当时,,,,显然.②当≤a<1时,,,故.③当时,,,,故.综合①②③知a≥.【参考答案】C求分段函数应注意的问题:在求分段函数的值f(x0)时,首先要判断x0属于定义域的哪个子集,然后再代入相应的关系式;分段函数的值域应是其定义域内不同子集上各关系式的取值范围的并集.2.已知函数=是上的减函数,那么的取值范围是A.(0,3)B.C.(0,2)D.【解析】∵为上的减函数,∴时,单调递减,即,则;时,单调递减,即,且,即.综上,的取值范围是,故选D.【答案】D易错点3对单调区间和在区间上单调的两个概念理解错误若函数f(x)=x2+2ax+4的

4、单调递减区间是(-∞,2],则实数a的取值范围是________.【错解】函数f(x)的图象的对称轴为直线x=-a,由于函数在区间(-∞,2]上单调递减,因此-a≥2,即a≤-2.【错因分析】错解中把单调区间误认为是在区间上单调.【试题解析】因为函数f(x)的单调递减区间为(-∞,2],且函数f(x)的图象的对称轴为直线x=-a,所以有-a=2,即a=-2.【参考答案】a=-2单调区间是一个整体概念,比如说函数的单调递减区间是I,指的是函数递减的最大范围为区间I.而函数在某一区间上单调,则指此区间是相应单调区间的子区间.所以我们在解决函数的单调性问题时,一定要仔细读题,明确

5、条件的含义.3.已知函数在[2,8]上是单调函数,则k的取值范围是A.B.C.D.【解析】根据题意,函数的对称轴为x,若f(x)在[2,8]上是单调函数,必有2或8,解可得:k≤4或k≥16,即k的取值范围是(﹣∞,4]∪[16,+∞);故选D.【答案】D易错点4忽略定义域的对称导致函数奇偶性判断错误判断下列函数的奇偶性:(1)f(x)=(x-1);(2)f(x)=.【错解】(1)f(x)=(x-1)·=.∵,∴f(x)为偶函数.(2),∵f(-x)≠-f(x)且f(-x)≠f(x),∴f(x)为非奇非偶函数.【错因分析】要判断函数的奇偶性,必须先求函数定义域(看定义域是否

6、关于原点对称).有时还需要在定义域制约条件下将f(x)进行变形,以利于判定其奇偶性.【试题解析】(1)由≥0得{x

7、x>1,或x≤-1},∵f(x)定义域关于原点不对称,∴f(x)为非奇非偶函数.(2)由得-1≤x≤1且x≠0,定义域关于原点对称,又-1≤x≤1且x≠0时,f(x)==,∵,∴f(x)为奇函数.【参考答案】(1)非奇非偶函数;(2)奇函数.根据函数奇偶性的定义,先看函数的定义域是否关于原点对称,若是,再检查函数解析式是否满足奇偶性的条件.函数奇偶性判断的方法(1)定义法:(2)图象法:即若函数的图象关于原点对称,则函数为奇函数;若函数图象关于y轴对称,则函数

8、为偶函数.此法多用在解选择填空题中.4.下列函数是奇函数的是A.B.C.D.【解析】,所以A为非奇非偶函数,,所以B为偶函数,,所以C为奇函数,,所以D为偶函数,故选C.【答案】C判断函数的奇偶性,应先求函数的定义域,奇函数、偶函数的定义域应关于原点对称,不关于原点对称的既不是奇函数也不是偶函数.再找与的关系,若,则函数为偶函数;若,则函数为奇函数.易错点5因忽略幂底数的范围而导致错误化简(1-a)[(a-1)-2(-a)]=________.【错解】(1-a)[(a-1)-2·(-a)]=(1-a)(a-1)-1

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。