资源描述:
《2020年高考数学(理)之纠错笔记专题13 概率含答案.docx》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、专题13概率易错点1忽略概率加法公式的应用前提致错某商店日收入(单位:元)在下列范围内的概率如下表所示:日收入[1000,1500)[1500,2000)[2000,2500)[2500,3000)概率0.12ab0.14已知日收入在[1000,3000)(元)范围内的概率为0.67,求月收入在[1500,3000)(元)范围内的概率.【错解】记这个商店日收入在[1000,1500),[1500,2000),[2000,2500),[2500,3000)(元)范围内的事件分别为A,B,C,D,则日收入在[1500,3000)(元)范围内的事件
2、为B+C+D,所以P(B+C+D)=1-P(A)=0.88.【错因分析】误用P(B+C+D)=1-P(A).事实上,本题中P(A)+P(B)+P(C)+P(D)≠1,故事件A与事件B+C+D并不是对立事件.【试题解析】因为事件A,B,C,D互斥,且P(A)+P(B)+P(C)+P(D)=0.67,所以P(B+C+D)=0.67-P(A)=0.55.在应用概率加法公式时,一定要注意其应用的前提是涉及的事件是互斥事件.对于事件A,B,有,只有当事件A,B互斥时,等号才成立.1.已知射手甲射击一次,命中9环(含9环)以上的概率为0.56,命中8环的
3、概率为0.22,命中7环的概率为0.12.(1)求甲射击一次,命中不足8环的概率;(2)求甲射击一次,至少命中7环的概率.【答案】(1)甲射击一次,命中不足8环的概率是0.22.(2)甲射击一次,至少命中7环的概率为0.9【解析】记“甲射击一次,命中7环以下”为事件A,则P(A)=1﹣0.56﹣0.22﹣0.12=0.1,“甲射击一次,命中7环”为事件B,则P(B)=0.12,由于在一次射击中,A与B不可能同时发生,故A与B是互斥事件,(1)“甲射击一次,命中不足8环”的事件为A+B,由互斥事件的概率加法公式,P(A+B)=P(A)+P(B)
4、=0.1+0.12=0.22.答:甲射击一次,命中不足8环的概率是0.22.(2)方法1:记“甲射击一次,命中8环”为事件C,“甲射击一次,命中9环(含9环)以上”为事件D,则“甲射击一次,至少命中7环”的事件为B+C+D,∴P(B+C+D)=P(B)+P(C)+P(D)=0.12+0.22+0.56=0.9.答:甲射击一次,至少命中7环的概率为0.9.方法2:∵“甲射击一次,至少命中7环”为事件,∴1﹣0.1=0.9.答:甲射击一次,至少命中7环的概率为0.9.【名师点睛】本题考查概率的求法,是基础题.解题时要认真审题,仔细解答,注意合理地
5、运用对立事件的概率的求法.易错点2混淆“等可能”与“非等可能”从5名男生和3名女生中任选1人去参加演讲比赛,求选中女生的概率.【错解】从8人中选出1人的结果有“男生”“女生”两种,则选中女生的概率为12.【错因分析】因为男生人数多于女生人数,所以选中男生的机会大于选中女生的机会,它们不是等可能的.【试题解析】选出1人的所有可能的结果有8种,即共有8个基本事件,其中选中女生的基本事件有3个,故选中女生的概率为38.利用古典概型的概率公式求解时,注意需满足两个条件:(1)所有的基本事件只有有限个;(2)试验的每个基本事件是等可能发生的.2.20
6、19年中国北京世界园艺博览会于4月29日至10月7日在北京市延庆区举办.如果小明从中国馆、国际馆、植物馆、生活体验馆四个展馆中随机选择一个进行参观,那么他选择的展馆恰为中国馆的概率为A.B.C.D.【答案】B【解析】可能出现的选择有种,满足条件要求的种数为种,则,故选B.【名师点睛】本题考查利用古典概型完成随机事件的概率的求解,难度较易.古典概型的概率计算公式:(目标事件的数量)(基本事件的总数).错点3几何概型中测度的选取不正确在等腰直角三角形ABC中,直角顶点为C.(1)在斜边AB上任取一点M,求AM7、以C为端点任作一条射线CM,与线段AB交于点M,求AM8、接CC'.由题意,知AB=2AC.由于点M是在斜边AB上任取的,所以点M等可能分布在线段AB上,因此基本事件的区域应是线段AB.所以.(2)由于在∠ACB内作射线C