有限元法基础讲稿-第19讲新doc.ppt

有限元法基础讲稿-第19讲新doc.ppt

ID:48430234

大小:169.50 KB

页数:8页

时间:2020-01-19

有限元法基础讲稿-第19讲新doc.ppt_第1页
有限元法基础讲稿-第19讲新doc.ppt_第2页
有限元法基础讲稿-第19讲新doc.ppt_第3页
有限元法基础讲稿-第19讲新doc.ppt_第4页
有限元法基础讲稿-第19讲新doc.ppt_第5页
资源描述:

《有限元法基础讲稿-第19讲新doc.ppt》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、结构动力学问题的有限元法动力学问题在国民经济和科学技术的发展中有着广泛的应用领域。最经常遇到的是结构动力学问题,它有两类研究对象:一类是在运动状态下工作的机械或结构,例如高速旋转的电机、汽轮机、离心压缩机,往复运动的内燃机、冲压机床,以及高速运行的车辆、飞行器等,它们承受着本身惯性及与周围介质或结构相互作用的动力载荷。如何保证它们运行的平稳性及结构的安全性,是极为重要的研究课题。另一类是承受动力载荷作用的工程结构,例如建于地面的高层建筑和厂房,石化厂的反应塔和管道,核电站的安全壳和热交换器,近海工程的海洋石油平台等,它们

2、可能承受强风、水流、地震以及波浪等各种动力载荷的作用。这些结构的破裂、倾覆和垮塌等破坏事故的发生,将给人民的生命财产造成巨大的损失。正确分析和设计这类结构,在理论和实际上也都是具有意义的课题。结构动力学问题的有限元法动力学研究的另一重要领域是波在介质中的传播问题。它是研究短暂作用于介质边界或内部的载荷所引起的位移和速度的变化,如何在介质中向周围传播,以及在界面上如何反射、折射等的规律。它的研究在结构的抗震设计、人工地震勘探、无损探伤等领域都有广泛的应用背景,因此也是近20多年一直受到工程和科技界密切关注的课题。现在应用有

3、限单元法和高速电子计算机,已经可以比较正确地进行各种复杂结构的动力计算,本章阐明如何应用有限单元法进行动力分析。主题:A.运动方程B.质量矩阵C.阻尼矩阵D.结构自振频率与振型E.振型叠加法求解结构的受迫振动结构动力学问题的有限元法运动方程运动方程结构离散化以后,在运动状态中各节点的动力平衡方程如下Fi+Fd+P(t)=Fe式中:Fi、Fd、P(t)分别为惯性力、阻尼力和动力荷载,均为向量;Fe为弹性力。弹性力向量可用节点位移δ和刚度矩阵K表示如下Fe=Kδ式中:刚度矩阵K的元素Kij为节点j的单位位移在节点i引起的弹性

4、力。根据达朗贝尔原理,可利用质量矩阵M和节点加速度表示惯性力如下式中:质量矩阵的元素Mij为节点j的单位加速度在节点i引起的惯性力。设结构具有粘滞阻尼,可用阻尼矩阵C和节点速度表示阻尼力如下(2-2-1)结构动力学问题的有限元法…运动方程式中:阻尼矩阵的元素Cij为节点j的单位速度在节点i引起的阻尼力。将各力代入式(2-2-1),得到运动方程如下记则运动方程可写成在地震时,设地面加速度为a,结构相对于地面的加速度为,结构各节点的实际加速度等于a+,在计算惯性力时须用它代替式(2-2-3)中的。至于弹性力和阻尼力,则分别取

5、决于结构的应变和应变速率,即取决于位移和速度,与地面加速度无关。(2-2-3)(2-2-2)结构动力学问题的有限元法质量矩阵质量矩阵下面用m表示单元质量矩阵,M表示整体质量矩阵。求出单元质量矩阵后,进行适当的组合即可得到整体质量矩阵。组合方法与由单元刚度矩阵求整体刚度矩阵时相似。在动力计算中可采用两种质量矩阵,即协调质量矩阵和集中质量矩阵。1.协调质量矩阵从运动的结构中取出一个微小部分,根据达朗贝尔原理,在它的单位体积上作用的惯性力为式中:ρ为材料的密度。在对结构进行离散化以后,取出一个单元,并采用如下形式的位移函数则结

6、构动力学问题的有限元法…质量矩阵再利用荷载移置的一般公式求得作用于单元节点上的惯性力为即可见,单元质量矩阵为如此计算单元质量矩阵,单元的动能和位能是互相协调的,因此叫做协调质量矩阵。2.集中质量矩阵假定单元的质量集中在它的节点上,质量的平移和转动可同样处理。这样得到的质量矩阵是对角线矩阵。(2-2-4)结构动力学问题的有限元法…质量矩阵单元集中质量矩阵定义如下:式中,为函数的矩阵,在分配给节点i的区域内取l,在域外取0。由于分配给各节点的区域不能交错,所以由上式计算的质量矩阵是对角线的。3.平面等应变三角形单元集中质量矩

7、阵与协调质量矩阵设单元重量为W,将它3等分,分配给每一节点,得到单元集中质量矩阵如下单元协调质量矩阵为(2-2-6)(2-2-5)结构动力学问题的有限元法…质量矩阵在单元数目相同的条件下,两种质量矩阵给出的计算精度是相差不多的。集中质量矩阵不但本身易于计算,而且由于它是对角线矩阵,可使动力计算简化很多。对于某些问题,如梁、板、壳等。由于可省去转动惯性项,运动方程的自由度数量可显著减少。当采用高次单元时,推导集中质量矩阵是困难的。另外,只要离散化时保持了单元之间的连续性,由协调质量矩阵算得的频率代表结构真实自振频率的上限。

8、(2-2-7)

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。