欢迎来到天天文库
浏览记录
ID:48385256
大小:2.07 MB
页数:16页
时间:2019-11-20
《2019-2020年高考数学仿真押题试卷十九含答案解析.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、专题19高考数学仿真押题试卷(十九)注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。2.选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。写在试题卷、草稿纸和答题卡上的非答题区域均无效。4.考试结束后,请将本试题卷和答题卡一并上交。第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知
2、集合,,,则 A.B.,C.D.,【解析】解:;.【答案】. 2.已知的共轭复数是,且为虚数单位),则复数在复平面内对应的点位于 A.第一象限B.第二象限C.第三象限D.第四象限【解析】解:设,,,,解得:,复数在复平面内对应的点为,此点位于第四象限.【答案】. 163.已知向量,,且与的夹角为,则 A.5B.C.7D.37【解析】解:由题可得:向量,,所以,所以,.【答案】. 4.已知函数,若,则实数的取值范围是 A.,B.,C.,,D.,,【解析】解:函数,在各段内都是减函数,并且,,所以在上递减,又,所以,解得:,【答案】.
3、 5.下图的程序框图的算法思路源于我国古代数学名著《数书九章》中的“中国剩余定理”.已知正整数被3除余2,被7除余4,被8除余5,求的最小值.执行该程序框图,则输出的 A.50B.53C.59D.62【解析】解:【方法一】正整数被3除余2,得,;16被8除余5,得,;被7除余4,得,;求得的最小值是53.【方法二】按此歌诀得算法如图,则输出的结果为按程序框图知的初值为1229,代入循环结构得,即输出值为53.【答案】. 6.已知函数,将函数的图象向左平移个单位长度后,所得到的图象关于轴对称,则的最小值是 A.B.C.D.【解析】解:,
4、将函数的图象向左平移个单位长度后,得到函数的图象,又所得到的图象关于轴对称,所以,即,,又,所以当时,最小为.【答案】. 7.已知命题:函数是定义在实数集上的奇函数;命题:直线是的切线,则下列命题是真命题的是 A.B.C.D.【解析】解:,即是奇函数,故命题是真命题,16函数的导数,当时,不存在,此时切线为轴,即,故命题是真命题,则是真命题,其余为假命题,【答案】. 8.已知双曲线的渐近线与相切,则双曲线的离心率为 A.2B.C.D.【解析】解:取双曲线的渐近线,即.双曲线,的渐近线与相切,圆心到渐近线的距离,,化为,两边平方得,化为
5、..【答案】. 9.我国明代著名乐律学家、明宗室王子朱载堉在《律学新说》中提出的十二平均律,即是现代在钢琴的键盘上,一个八度音程从一个键到下一个键的8个白键与5个黑键(如图)的音频恰成一个公比为的等比数列的原理,也即高音的频率正好是中音的2倍.已知标准音的频率为,那么频率为的音名是 A.B.C.D.【解析】解:从第二个单音起,每一个单音的频率与它的左边一个单音的频率的比.故从起,每一个单音的频率与它右边的一个单音的比为16由,解得,频率为的音名是 ,【答案】. 10.函数的大致图象是 A.B.C.D.【解析】解:当时,,,所以,故可排
6、除,;当时,(2),故可排除.【答案】. 11.利用产生两组,之间的均匀随机数: , :若产生了2019个样本点,则落在曲线、和所围成的封闭图形内的样本点个数估计为 A.673B.505C.1346D.1515【解析】解:由曲线、和所围成的封闭图形的面积为,所以,则落在曲线、和所围成的封闭图形内的样本点个数估计为,【答案】. 12.已知点为直线上任意一点,过点作抛物线的两条切线,切点分别为,、,,则 16A.2B.C.D.4【解析】解:不妨设,过的切线方程设为,代入抛物线方程得,又,故.【答案】. 第Ⅱ卷二、填空题:本大题共4小题
7、,每小题5分.13.若整数、满足不等式组,则的最小值为 .【解析】解:整数、满足不等式组的可行域如图:三角形区域内的点、、、,连线的斜率是最小值.则的最小值为:.故答案为:. 14.已知椭圆的焦点为、,以原点为圆心、椭圆的焦距为直径的与椭圆内切于点,则 .16【解析】解:椭圆的焦点为、,以原点为圆心、椭圆的焦距为直径的与椭圆内切于点,可得,所以.故答案为:1. 15.定义在上的函数满足,若,且,则 .【解析】解:根据题意,,则,变形可得,,又由,且,则,则;故答案为:4. 16.已知是锐角的外接圆圆心,是最大角,若,则的取值范围为
8、 .【解析】解:由是锐角的外接圆圆心,则点为三角形三边中垂线的交点,由向量投影的几何意义有:,则,所以则,由正弦定理得:,16所以,所以,又,,所以,,故答案为:,.三、解答题:解答应写出文字
此文档下载收益归作者所有