欢迎来到天天文库
浏览记录
ID:48361989
大小:75.50 KB
页数:4页
时间:2019-11-16
《2018年秋高中数学课时分层作业3充分条件与必要条件充要条件新人教A版选修1-1.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、课时分层作业(三)充分条件与必要条件充要条件(建议用时:40分钟)[基础达标练]一、选择题1.已知集合A={1,a},B={1,2,3},则“a=3”是“A⊆B”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件A [∵A={1,a},B={1,2,3},A⊆B,∴a∈B且a≠1,∴a=2或3,∴“a=3”是“A⊆B”的充分不必要条件.]2.设{an}是公比为q的等比数列,则“q>1”是“{an}为递增数列”的( )【导学号:97792019】A.充分而不必要条
2、件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件D [当数列{an}的首项a1<0时,若q>1,则数列{an}是递减数列;当数列{an}的首项a1<0时,要使数列{an}为递增数列,则01”是“{an}为递增数列”的既不充分也不必要条件.]3.函数f(x)=x2+mx+1的图象关于直线x=1对称的充要条件是( )A.m=-2 B.m=2C.m=-1D.m=1A [由函数f(x)=x2+mx+1的图象关于直线x=1对称可得-=1,即m=-2,且当m=-2
1”是“{an}为递增数列”的既不充分也不必要条件.]3.函数f(x)=x2+mx+1的图象关于直线x=1对称的充要条件是( )A.m=-2 B.m=2C.m=-1D.m=1A [由函数f(x)=x2+mx+1的图象关于直线x=1对称可得-=1,即m=-2,且当m=-2
3、时,函数f(x)=x2+mx+1的图象关于直线x=1对称,故选A.]4.设p是q的充分不必要条件,r是q的必要不充分条件.s是r的充要条件,则s是p的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件B [由题可知,pr⇔s,则p⇒s,sp,故s是p的必要不充分条件.]5.若x>2m2-3是-12m2-3是
4、-15、x(x-1)<0},B={x6、07、x(x-1)<0}={x8、00”是“函数y=ax2+x+1在(0,+∞)上单调递增的________9、条件.”【导学号:97792020】充分不必要 [当a>0时,y=a+1-,在上单调递增,因此在(0,+∞)上单调递增,故充分性成立.当a=0时,此时y=x+1,在R上单调递增,因此在(0,+∞)上单调递增.故必要性不成立.综上,“a>0”是“函数y=ax2+x+1在(0,+∞)上单调递增”的充分不必要条件.]8.若p:x(x-3)<0是q:2x-310、的充分不必要条件知{x11、012、≥2时,Sn-1=n2+c,∴an=Sn-Sn-1=2n+1,∴an+1-an=2为常数.又a1=S1=4+c,∴a2-a1=5-(4+c)=1-c.∵{an}是等差数列,∴a2-a1=2,∴1-c=2,∴c=-1.反之,当c=-1时,Sn=n2+2n,可得an=2n+1(n∈N*),∴{an}为等差数列,∴{an}为等差数列的充要条件是c=-1.[能力提升练]1.下面四个条件中,使a>b成立的充分不必要条件是( )A.a≥b+1B.a>b-1C.a2>b2D.a3>b3A [由a≥b+1>b13、,从而a≥b+1⇒a>b;反之,如a=4,b=3.5,则4>3.5D⇒/4≥3.5+1,故a>bD⇒/a≥b+1,故A正确.]2.一元二次方程ax2+2x+1=0(a≠0)有一个正根和一个负根的充分不必要条件是( )A.a<0B.a>0C.a<-1D.a<1C [一元二次方程ax2+2x+1=0(a≠0)有一个正根和一个负根的充要条件是<0,即a<0,则充分不必要条件的范围应是集合{a14、a<0}的真子集,故选C.]3.设m,n为非零向量,则“存在负数λ,使得m=λn”是“m·n<0”的____
5、x(x-1)<0},B={x
6、07、x(x-1)<0}={x8、00”是“函数y=ax2+x+1在(0,+∞)上单调递增的________9、条件.”【导学号:97792020】充分不必要 [当a>0时,y=a+1-,在上单调递增,因此在(0,+∞)上单调递增,故充分性成立.当a=0时,此时y=x+1,在R上单调递增,因此在(0,+∞)上单调递增.故必要性不成立.综上,“a>0”是“函数y=ax2+x+1在(0,+∞)上单调递增”的充分不必要条件.]8.若p:x(x-3)<0是q:2x-310、的充分不必要条件知{x11、012、≥2时,Sn-1=n2+c,∴an=Sn-Sn-1=2n+1,∴an+1-an=2为常数.又a1=S1=4+c,∴a2-a1=5-(4+c)=1-c.∵{an}是等差数列,∴a2-a1=2,∴1-c=2,∴c=-1.反之,当c=-1时,Sn=n2+2n,可得an=2n+1(n∈N*),∴{an}为等差数列,∴{an}为等差数列的充要条件是c=-1.[能力提升练]1.下面四个条件中,使a>b成立的充分不必要条件是( )A.a≥b+1B.a>b-1C.a2>b2D.a3>b3A [由a≥b+1>b13、,从而a≥b+1⇒a>b;反之,如a=4,b=3.5,则4>3.5D⇒/4≥3.5+1,故a>bD⇒/a≥b+1,故A正确.]2.一元二次方程ax2+2x+1=0(a≠0)有一个正根和一个负根的充分不必要条件是( )A.a<0B.a>0C.a<-1D.a<1C [一元二次方程ax2+2x+1=0(a≠0)有一个正根和一个负根的充要条件是<0,即a<0,则充分不必要条件的范围应是集合{a14、a<0}的真子集,故选C.]3.设m,n为非零向量,则“存在负数λ,使得m=λn”是“m·n<0”的____
7、x(x-1)<0}={x
8、00”是“函数y=ax2+x+1在(0,+∞)上单调递增的________
9、条件.”【导学号:97792020】充分不必要 [当a>0时,y=a+1-,在上单调递增,因此在(0,+∞)上单调递增,故充分性成立.当a=0时,此时y=x+1,在R上单调递增,因此在(0,+∞)上单调递增.故必要性不成立.综上,“a>0”是“函数y=ax2+x+1在(0,+∞)上单调递增”的充分不必要条件.]8.若p:x(x-3)<0是q:2x-310、的充分不必要条件知{x11、012、≥2时,Sn-1=n2+c,∴an=Sn-Sn-1=2n+1,∴an+1-an=2为常数.又a1=S1=4+c,∴a2-a1=5-(4+c)=1-c.∵{an}是等差数列,∴a2-a1=2,∴1-c=2,∴c=-1.反之,当c=-1时,Sn=n2+2n,可得an=2n+1(n∈N*),∴{an}为等差数列,∴{an}为等差数列的充要条件是c=-1.[能力提升练]1.下面四个条件中,使a>b成立的充分不必要条件是( )A.a≥b+1B.a>b-1C.a2>b2D.a3>b3A [由a≥b+1>b13、,从而a≥b+1⇒a>b;反之,如a=4,b=3.5,则4>3.5D⇒/4≥3.5+1,故a>bD⇒/a≥b+1,故A正确.]2.一元二次方程ax2+2x+1=0(a≠0)有一个正根和一个负根的充分不必要条件是( )A.a<0B.a>0C.a<-1D.a<1C [一元二次方程ax2+2x+1=0(a≠0)有一个正根和一个负根的充要条件是<0,即a<0,则充分不必要条件的范围应是集合{a14、a<0}的真子集,故选C.]3.设m,n为非零向量,则“存在负数λ,使得m=λn”是“m·n<0”的____
10、的充分不必要条件知{x
11、012、≥2时,Sn-1=n2+c,∴an=Sn-Sn-1=2n+1,∴an+1-an=2为常数.又a1=S1=4+c,∴a2-a1=5-(4+c)=1-c.∵{an}是等差数列,∴a2-a1=2,∴1-c=2,∴c=-1.反之,当c=-1时,Sn=n2+2n,可得an=2n+1(n∈N*),∴{an}为等差数列,∴{an}为等差数列的充要条件是c=-1.[能力提升练]1.下面四个条件中,使a>b成立的充分不必要条件是( )A.a≥b+1B.a>b-1C.a2>b2D.a3>b3A [由a≥b+1>b13、,从而a≥b+1⇒a>b;反之,如a=4,b=3.5,则4>3.5D⇒/4≥3.5+1,故a>bD⇒/a≥b+1,故A正确.]2.一元二次方程ax2+2x+1=0(a≠0)有一个正根和一个负根的充分不必要条件是( )A.a<0B.a>0C.a<-1D.a<1C [一元二次方程ax2+2x+1=0(a≠0)有一个正根和一个负根的充要条件是<0,即a<0,则充分不必要条件的范围应是集合{a14、a<0}的真子集,故选C.]3.设m,n为非零向量,则“存在负数λ,使得m=λn”是“m·n<0”的____
12、≥2时,Sn-1=n2+c,∴an=Sn-Sn-1=2n+1,∴an+1-an=2为常数.又a1=S1=4+c,∴a2-a1=5-(4+c)=1-c.∵{an}是等差数列,∴a2-a1=2,∴1-c=2,∴c=-1.反之,当c=-1时,Sn=n2+2n,可得an=2n+1(n∈N*),∴{an}为等差数列,∴{an}为等差数列的充要条件是c=-1.[能力提升练]1.下面四个条件中,使a>b成立的充分不必要条件是( )A.a≥b+1B.a>b-1C.a2>b2D.a3>b3A [由a≥b+1>b
13、,从而a≥b+1⇒a>b;反之,如a=4,b=3.5,则4>3.5D⇒/4≥3.5+1,故a>bD⇒/a≥b+1,故A正确.]2.一元二次方程ax2+2x+1=0(a≠0)有一个正根和一个负根的充分不必要条件是( )A.a<0B.a>0C.a<-1D.a<1C [一元二次方程ax2+2x+1=0(a≠0)有一个正根和一个负根的充要条件是<0,即a<0,则充分不必要条件的范围应是集合{a
14、a<0}的真子集,故选C.]3.设m,n为非零向量,则“存在负数λ,使得m=λn”是“m·n<0”的____
此文档下载收益归作者所有