人教版八年级数学上第13章 轴对称同步单元检测试题(附答案)

人教版八年级数学上第13章 轴对称同步单元检测试题(附答案)

ID:48343501

大小:327.00 KB

页数:5页

时间:2019-10-26

人教版八年级数学上第13章 轴对称同步单元检测试题(附答案)_第1页
人教版八年级数学上第13章 轴对称同步单元检测试题(附答案)_第2页
人教版八年级数学上第13章 轴对称同步单元检测试题(附答案)_第3页
人教版八年级数学上第13章 轴对称同步单元检测试题(附答案)_第4页
人教版八年级数学上第13章 轴对称同步单元检测试题(附答案)_第5页
资源描述:

《人教版八年级数学上第13章 轴对称同步单元检测试题(附答案)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、人教版八年级数学第13章轴对称同步检测试题(全卷总分100分)姓名得分一、选择题(每小题3分,共30分)1.甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文中,不是轴对称图形的是()A     B     C     D2.已知点P(-2,1),那么点P关于x轴对称的点P′的坐标是()A.(-2,1)B.(-2,-1)C.(-1,2)D.(2,1)3.如图,△ABC与△A′B′C′关于直线MN对称,P为MN上任一点,下列结论中错误的是()A.△AA′P是等腰三角形B.MN垂直平分AA′,CC′C.△ABC与△A′B′C′面积相等D.直线A

2、B、A′B′的交点不一定在MN上4.等腰三角形的一边长为6,另一边长为13,则它的周长为()A.25B.25或32C.32D.195.如图,将△ABC沿直线DE折叠后,使得点B与点A重合,已知AC=5cm,△ADC的周长为17cm,则BC的长为()A.7cmB.10cmC.12cmD.22cm6.(聊城中考)如图,点P是∠AOB外的一点,点M,N分别是∠AOB两边上的点,点P关于OA的对称点Q恰好落在线段MN上,点P关于OB的对称点R落在MN的延长线上.若PM=2、5cm,PN=3cm,MN=4cm,则线段QR的长为()A.4、5cmB.5、5c

3、mC.6、5cmD.7cm7.如图,∠A=15°,AB=BC=CD=DE=EF,则∠DEF等于()A.90°B.75°C.70°D.60°8.如图,A,B两点在正方形网格的格点上,每个方格都是边长为1的正方形,点C也在格点上,且△ABC为等腰三角形,满足条件的点C有()A.6个B.7个C.8个D.9个9.如图,BD是△ABC的角平分线,DE∥BC,DE交AB于E,若AB=BC,则下列结论中错误的是()A.BD⊥ACB.∠A=∠EDAC.2AD=BCD.BE=ED10.如图,在△ABC中,AB=20cm,AC=12cm,点P从点B出发以每秒3cm的

4、速度向点A运动,点Q从点A同时出发以每秒2cm的速度向点C运动,其中一个动点到达端点时,另一个动点也随之停止运动,当△APQ是以A为顶角的等腰三角形时,运动的时间是()A.2、5秒B.3秒C.3、5秒D.4秒二、填空题(每小题3分,共18分)11.在△ABC中,AB=AC,∠A=100°,则∠B=.12.如图,△ABC与△A1B1C1关于某条直线成轴对称,则∠A1=.13.如图,在△ABC中,AB=AC,点E在CA延长线上,EP⊥BC于点P,交AB于点F,若AF=2,BF=3,则CE的长度为.14.如图,在等边△ABC中,AC=9,点O在AC上,

5、且AO=3,点P是AB上一动点,连接OP,以O为圆心,OP长为半径画弧交BC于点D,连接PD,如果PO=PD,那么AP的长是.15.(江西中考)如图,在△ABC中,AB=4,BC=6,∠B=60°,将△ABC沿着射线BC的方向平移2个单位长度后,得到△A′B′C′,连接A′C,则△A′B′C的周长为.16.如图,点P是∠AOB内部的一点,∠AOB=30°,OP=8cm,M,N是OA,OB上的两个动点,则△MPN周长的最小值cm、三、解答题(共52分)17.(10分)某科技公司研制开发了一种监控违章车辆的电子仪器.如图,有三条两两相交的公路,你认为

6、这个监控仪器安装在什么位置可离三个路口的交叉点的距离相等,以便及时进行监控?18.(10分)如图,已知Rt△ABC中,∠ACB=90°,CD⊥AB于D,∠BAC的平分线分别交BC、CD于E、F、试说明△CEF是等腰三角形.19.(10分)如图,点A,B,C在平面直角坐标系中的坐标分别为(5,5),(3,2),(6,3).(1)作△ABC关于直线l:x=1对称的△A1B1C1,点A,B,C的对称点分别是A1,B1,C1;(2)点A1的坐标为,点B1的坐标为,点C1的坐标为.20.(10分)如图,已知△ABC是等边三角形,E,D,G分别在AB,BC,

7、AC边上,且AE=BD=CG、连接AD,BG,CE,相交于F,M,N、(1)求证:AD=CE;(2)求∠DFC的度数;(3)试判断△FMN的形状,并说明理由.21.(12分)在等边△ABC中,(1)如图1,P,Q是BC边上两点,AP=AQ,∠BAP=20°,求∠AQB的度数;(2)点P,Q是BC边上的两个动点(不与点B,C重合),点P在点Q的左侧,且AP=AQ,点Q关于直线AC的对称点为M,连接AM,PM、①依题意将图2补全;②小茹通过观察、实验,提出猜想:在点P,Q运动的过程中,始终有PA=PM,小茹把这个猜想与同学们进行交流,通过讨论,形成了

8、证明该猜想的几种想法:想法1:要证PA=PM,只需证△APM是等边三角形.想法2:在BA上取一点N,使得BN=BP,要证PA=PM,只需

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。