指数与对数的运算的教学案

指数与对数的运算的教学案

ID:48337040

大小:441.02 KB

页数:10页

时间:2019-10-27

指数与对数的运算的教学案_第1页
指数与对数的运算的教学案_第2页
指数与对数的运算的教学案_第3页
指数与对数的运算的教学案_第4页
指数与对数的运算的教学案_第5页
资源描述:

《指数与对数的运算的教学案》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、第四讲指数与对数的运算一.课标要求(1)通过具体实例(如细胞的分裂,考古中所用的14C的衰减,药物在人体内残留量的变化等),了解指数函数模型的实际背景;(2)理解有理指数幂的含义,通过具体实例了解实数指数幂的意义,掌握幂的运算。(3)理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;通过阅读材料,了解对数的发现历史以及对简化运算的作用;二.命题走向指数与对数的性质和运算,在历年的高考中一般不单独命题。大多以指数函数、对数函数等基本函数的性质为依托,结合运算推理,能运用它

2、们的性质解决具体问题。为此,我们要熟练掌握指数、对数运算法则,明确算理,能对常见的指数型函数、对数型函数进行变形处理。预测2009年对本节的考察是:1.题型有两个选择题和一个解答题;2.题目形式多以指数函数、对数函数、幂函数为载体的复合函数来考察函数的性质。同时它们与其它知识点交汇命题,则难度会加大。三.要点精讲1、整数指数幂的概念。(1)概念:n个a(2)运算性质:两点解释:①可看作∴==②可看作∴==2、根式:(1)定义:若则x叫做a的n次方根。(2)求法:当n为奇数时:正数的n次方根为正数,负

3、数的n次方根为负数记作:当n为偶数时,正数的n次方根有两个(互为相反数)记作:负数没有偶次方根0的任何次方根为0名称:叫做根式n叫做根指数a叫做被开方数(3)公式:;当n为奇数时;当n为偶数时3、分数指数幂(1)有关规定:事实上,若设a>0,,由n次根式定义,次方根,即:(2)同样规定:;0的正分数指数幂等于0,0的负分数指数幂没有意义。(3)指数幂的性质:整数指数幂的运算性质推广到有理指数幂。(注)上述性质对r、R均适用。4、对数的概念(1)定义:如果的b次幂等于N,就是,那么数称以为底N的对数,

4、记作其中称对数的底,N称真数。①以10为底的对数称常用对数,记作;②以无理数为底的对数称自然对数,,记作;(2)基本性质:①真数N为正数(负数和零无对数);2);③;4)对数恒等式:。(3)运算性质:如果则①;②;③R)。(4)换底公式:两个非常有用的结论①;②。【注】指数方程和对数方程主要有以下几种类型:(1)af(x)=bÛf(x)=logab,logaf(x)=bÛf(x)=ab;(定义法)(2)af(x)=ag(x)Ûf(x)=g(x),logaf(x)=logag(x)Ûf(x)=g(x)

5、>0(转化法)(3)af(x)=bg(x)Ûf(x)logma=g(x)logmb(取对数法)(1)logaf(x)=logbg(x)Ûlogaf(x)=logag(x)/logab(换底法)【课前预习】1、已知的值域为[1,7],则的取值范围是(  )A.[2,4]  B.C. D.2、若则3、【08重庆卷13】已知(a>0),则.四.典例解析题型1:指数运算例1.(1)计算:;(2)化简(3)化简:。(4)化简:例2.已知,求的值。题型2:对数运算例3.计算(1);(2);(3)。例4.设、、为

6、正数,且满足(1)求证:;(2)若,,求、、的值。例5(1)已知log189=a,18b=5,求log3645(用a,b表示)(2)设求证:题型4:指数、对数方程例6:解方程(1)(2)例7.设关于的方程R),(1)若方程有实数解,求实数b的取值范围;(2)当方程有实数解时,讨论方程实根的个数,并求出方程的解。.【课外作业】1.若,则的值为A.50B.58C.89D.111()2、若,则=;3、.如果函数在区间[-1,1]上的最大值是14,求的值。4、设若时有意义,求实数的范围。五.思维总结1.(其

7、中)是同一数量关系的三种不同表示形式,因此在许多问题中需要熟练进行它们之间的相互转化,选择最好的形式进行运算.在运算中,根式常常化为指数式比较方便,而对数式一般应化为同应化为同底;2.要熟练运用初中学习的多项式各种乘法公式;进行数式运算的难点是运用各种变换技巧,如配方、因式分解、有理化(分子或分母)、拆项、添项、换元等等,这些都是经常使用的变换技巧,必须通过各种题型的训练逐渐积累经验;3.解决含指数式或对数式的各种问题,要熟练运用指数、对数运算法则及运算性质,更关键是熟练运用指数与对数函数的性质,其

8、中单调性是使用率比较高的知识;答案详解【课前预习】1、答案:D先求出范围再求的范围;2、3、3题型1:指数运算例1.解:(1)原式=;(2)原式==(注意复习,根式开平方)(3)原式=。(4)原式=点评:根式的化简求值问题就是将根式化成分数指数幂的形式,然后利用分数指数幂的运算性质求解,对化简求值的结果,一般用分数指数幂的形式保留;一般的进行指数幂运算时,化负指数为正指数,化根式为分数指数幂,化小数为分数运算,同时兼顾运算的顺序。例2.解:∵,∴,∴,∴,∴,∴,又∵

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。