欢迎来到天天文库
浏览记录
ID:48245700
大小:109.50 KB
页数:5页
时间:2020-01-23
《1锐角三角函数(1) ——正弦.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、课堂教学设计课题:28.1锐角三角函数(1)——正弦授课时数:1日期:设计人:万双林设计要素设计内容教学内容分析教科书首先设置了一个实际问题,把这个实际问题抽象成数学问题,通过思考、探究,得到“在直角三角形中,当锐角的度数一定时,不管三角形的大小如何,这个角的对边与斜边的比是一个固定值”。由此引出正弦函数的概念。教学目标知识与技能1、经历当直角三角形的锐角固定时,它的对边与斜边的比值都固定(即正弦值不变)这一事实,从而理解正弦的概念。2、能根据正弦概念正确进行计算过程与方法通过思考和探究,让学生发现“这个角的对边与斜边的比是一
2、个固定值”的过程。情感态度价值观引导学生通过探索数量的比值关系,发现规律,从而培养学习数学的兴趣。学情分析学生初次接触“正弦”的概念,是很难理解的,注意加强对数量关系的比较、分析。教学分析教学重点理解正弦(sinA)概念,知道当直角三角形的锐角固定时,它的对边与斜边的比值是固定值教学难点难点当直角三角形的锐角固定时,它的对边与斜边的比值是固定值的事实。解决办法结合图形,从实际例子入手,引导学生仔细观察、比较、分析,总结规律。教学策略谈话,讨论,交流,仔细比较,认真分析教学资源教材教师教学用书中学教材全解与教材配套的练习册板书设
3、计28.1锐角三角函数(1)——正弦一、讨论交流:结论:①直角三角形中,30°角的对边与斜边的比值②直角三角形中,45°角的对边与斜边的比值③在直角三角形中,当锐角A的度数一定时,不管三角形的大小如何,∠A的对边与斜边的比二、正弦函数概念:规定:在Rt△ABC中,∠C=90,∠A的对边记作a,∠B的对边记作b,∠C的对边记作c.在Rt△ABC中,∠C=90°,我们把锐角A的对边与斜边的比叫做∠A的正弦,记作sinA,即sinA==.sinA=教学环节教师活动学生活动教学媒体使用预期效果导入新课 阅读教材73页引言部分,导入新知
4、识。揭示学习目标教师口述学习目标学生自学教师巡视,个别指导学生阅读教材第74至76页内容检测、反馈(1)教师问,①74页思考?②75页思考?③75页探究?(回顾三角形相似的判断方法)(2)师生归纳:正弦函数概念(3)教师强调解题的书写格式(1)学生一边思考,一边回答。(2)请一名学生板书75页探究的依据。(3)请两名学生板演例1当堂训练1、77页练习2、在△ABC中,∠C=90°,BC=2,sinA=,则边AC的长是()A.B.3C.D.全课小结在直角三角形中,当锐角A的度数一定时,不管三角形的大小如何,∠A的对边与斜边的比都
5、是.在Rt△ABC中,∠C=90°,我们把锐角A的对边与斜边的比叫做∠A的,记作,教学流程图教学设计评价课堂教学设计课题:28.1锐角三角函数(2)——余弦、正切授课时数:1日期:设计人:万双林设计设计内容要素教学内容分析余弦、正切仍然是直角三角形的边角关系,学习了正弦概念,余弦、正切的概念是容易掌握的。在此基础上得出锐角三角函数的概念。教学目标知识与技能1、感知当直角三角形的锐角固定时,它的邻边与斜边、对边与邻边的比值也都固定这一事实。2、能根据余弦、正切的概念,正确进行计算过程与方法逐步培养学生观察、比较、分析、概括的思维
6、能力。情感态度价值观引导学生结合图形,探索数量关系,培养学习数学的兴趣,进一步领会数形结合的思想方法。学情分析在第一课时的基础上,学生对锐角三角函数有了一定的认识,学习余弦、正切的概念,问题不会大。教学分析教学重点理解余弦、正切的概念教学难点难点熟练运用锐角三角函数的概念进行有关计算。解决办法数形结合,理解概念,总结规律教学策略仔细观察、认真比较教学资源教材教师教学用书中学教材全解与教材配套的练习册板书设计28.1锐角三角函数(2)——余弦、正切一、正弦的概念:在Rt△ABC中,∠C=90°,我们把锐角A的对边与斜边的比叫做∠
7、A的正弦,记作sinA,即sinA=二、余弦、正切在Rt△ABC中,∠C=90°,我们把∠A的邻边与斜边的比叫做∠A的余弦,记作cosA,即cosA==;把∠A的对边与邻边的比叫做∠A的正切,记作tanA,即tanA==.三、锐角三角函数我们把锐角A的正弦、余弦、正切都叫做∠A的锐角三角函数.对于锐角A的每一个确定的值,sinA有唯一确定的值与它对应,所以sinA是A的函数.同样地,cosA,tanA也是A的函数.四、计算教学环节教师活动学生活动教学媒体使用预期效果导入新课1、我们是怎样定义直角三角形中一个锐角的正弦的?2、在
8、Rt△ABC中,∠C=90°,当锐角A确定时,∠A的对边与斜边的比是,现在我们要问:∠A的邻边与斜边的比呢?∠A的对边与邻边的比呢?讨论,回答_斜边c_对边a_邻边b_C_B_A揭示学习目标教师口述学习目标学生自学教师巡视,个别指导学生阅读教材第77至78页内容检查自学效果类
此文档下载收益归作者所有